�

�TITEL �Relational Database�Access Layers�
�THEMA �A Pattern Language�
�AUTOR �Wolfgang Keller, Jens Coldewey�
{wk | jensc}@sdm.de
� ZEIT \@ "t. MMMM jjjj" �2. December 1996�
sd&m�software design & management�GmbH & Co. KG�Thomas-Dehler-Straße 27�81737 München�Telefon	(089) 6 38 12 - 0�Telefax	(089) 6 38 12 - 150
�Abstract
This Pattern Language about Relational Database Access Layers helps you design applications that use relational databases and also reflect the relational calculus at a business object level. Such applications are known as data driven or representational [� REF Lit_RobertCMartin * FORMATVERBINDEN �Mar95�]. The systems need not be object-oriented, you may also use a 3GL. Hence, the pattern language passes over mapping inheritance and polymorphism.

�Contents
� VERZEICHNIS \o "1-2" �1 Introduction	� GEHEZU _Toc373756448 � SEITENREF _Toc373756448 �5��
Related Work on Database Access Layers	� GEHEZU _Toc373756449 � SEITENREF _Toc373756449 �5��
General Forces	� GEHEZU _Toc373756450 � SEITENREF _Toc373756450 �6��
General Consequences	� GEHEZU _Toc373756451 � SEITENREF _Toc373756451 �7��
Running Example	� GEHEZU _Toc373756452 � SEITENREF _Toc373756452 �8��
Notational Conventions	� GEHEZU _Toc373756453 � SEITENREF _Toc373756453 �9��
Pattern Language Map	� GEHEZU _Toc373756454 � SEITENREF _Toc373756454 �10��
State of the Language	� GEHEZU _Toc373756455 � SEITENREF _Toc373756455 �10��
2 Framework Pattern	� GEHEZU _Toc373756456 � SEITENREF _Toc373756456 �11��
Pattern: Relational Database Access Layer	� GEHEZU _Toc373756457 � SEITENREF _Toc373756457 �11��
3 Structural Patterns	� GEHEZU _Toc373756458 � SEITENREF _Toc373756458 �17��
Pattern: Hierarchical Views	� GEHEZU _Toc373756459 � SEITENREF _Toc373756459 �17��
Pattern: Physical Views	� GEHEZU _Toc373756460 � SEITENREF _Toc373756460 �23��
Pattern: Query Broker	� GEHEZU _Toc373756461 � SEITENREF _Toc373756461 �27��
Pattern: View Cache	� GEHEZU _Toc373756462 � SEITENREF _Toc373756462 �33��
Pattern: View Factory	� GEHEZU _Toc373756463 � SEITENREF _Toc373756463 �37��
Pattern: Transaction Object	� GEHEZU _Toc373756464 � SEITENREF _Toc373756464 �39��
4 A Bag of Database Optimization Tricks	� GEHEZU _Toc373756465 � SEITENREF _Toc373756465 �43��
Where to Start with Database Optimizations	� GEHEZU _Toc373756466 � SEITENREF _Toc373756466 �43��
Pattern: Denormalization	� GEHEZU _Toc373756467 � SEITENREF _Toc373756467 �44��
Pattern: Overflow Table	� GEHEZU _Toc373756468 � SEITENREF _Toc373756468 �46��
Pattern: Controlled Redundancy	� GEHEZU _Toc373756469 � SEITENREF _Toc373756469 �47��
Pattern: Narrow Views	� GEHEZU _Toc373756470 � SEITENREF _Toc373756470 �49��
Pattern: Short Views	� GEHEZU _Toc373756471 � SEITENREF _Toc373756471 �51��
5 References	� GEHEZU _Toc373756472 � SEITENREF _Toc373756472 �53��
�
����Introduction
When designing an application that uses a relational database as its persistent data store, you come across an array of typical challenges. How do you provide a system with „good enough“ performance? How and where in your system do you write your SQL-code accessing the database? How do you deal with later performance optimizations like denormalization of the data model that might cause a partial rewrite of your SQL code? What is the interface an application kernel object uses to access the data stores?
In a three-layer-architecture it is proven tradition to encapsulate aspects of database access in a database access layer. This paper presents a framework and a set of design patterns that help you design such database access layers for relational databases.
Related Work on Database Access Layers
The framework provides a database view interface for applications that use their database in a relational fashion. Such systems are pretty common. They have a simple data model compared to full blown object oriented models. Though they may have thirty entities or more, you rarely find much inheritance or complex associations. Yet there are complex use cases. You usually encapsulate these in an application kernel. It is a good idea, to use the relational calculus for modeling these systems. The three-layer-architecture as presented in [Den91] is tailored for such systems.
Other persistence frameworks and pattern languages deal with full object persistence. These are Object to Relational Access Layers [� REF Lit_Kyle * FORMATVERBINDEN �Bro+96�, � REF Lit_ObjSpektrum * FORMATVERBINDEN �Col+96�, � REF Lit_Hypo * FORMATVERBINDEN �Kel+96a�], using a relational database and Object Access Layers using an object database [� REF Lit_Jens_fuer_Akmal * FORMATVERBINDEN �Col97�]. � REF _Ref357419989 * FORMATVERBINDEN �Figure 1� illustrates the relationship between the different access layers. Note that the architectural framework presented in this paper is not suited for such applications.
� EINBETTEN Visio.Drawing.3 ���
Figure � SEQ Figure * ARABISCH �1�: The three different kinds of database access layers
General Forces
When designing a Relational Database Access Layer you will find a typical set of forces. Most of these are not specific to a single pattern of the framework to be presented here. Many of them are not even specific to our framework like „Separation of concerns versus cost“. Such forces influence the design of the framework. The framework is a result of balancing these forces, leading to a set of consequences described below. The most important forces driving the design of the framework are:
Separation of concerns versus cost: Database programming is complex. So is application logic. Mixing them will add up to more than just the combined complexity. The easiest way is to separate application programming from database programming. Both parts will be easier to implement and to test. On the other hand the introduction of new layers of software increases the number of classes and raises design and implementation effort. The cost has to pay off with increased maintainability and easier performance tuning.
Performance: Database tuning is crucial to achieve acceptable performance of a business information system. Since a database is several orders of magnitude slower than a main processor, tuning actions will concentrate on database access. Tuning is an iterative process. To optimize database access you may change physical parameters of the storage, as well as the table layout, or the API to access the database.
A third normal form definition of data is best to work with relations�, but the database system will perform very poor if you use third normal form as physical model too.
Ease-of-use versus power: If you decide to encapsulate the database, the resulting interface should be easy to use. On the other hand the complexity of a database interface stems from its power. Hence, the interface of the encapsulation should be easy to use but still powerful enough for your project.
Flexibility versus complexity: Since database tuning is crucial, you want to have an encapsulation of the database that allows frequent changes to the underlying data model while the application kernel remains untouched. Still, the more flexible a system is, the more complex it will be and the more expensive it will be.
Mass problems and cost of development: Since large databases may have hundreds of tables you may desire an automatic process to build the interface. Macros, generators or templates reduce the effort. However, a generic interface takes more design effort to develop because it has to cover all possible cases.
Integration of legacy systems versus optimal design: You seldom develop business information systems from scratch. Instead you have to connect to legacy systems, which you are not allowed to touch. Usually you can not supersede the complete legacy code, because big bang strategies are risky and expensive. However, the structure of legacy data rarely fits your needs - if there is a structure at all. You may also have to bridge several generations of database technologies. To keep your application maintainable you have to encapsulate the legacy access. This is a particular strong force during reengineering projects.

General Consequences
Using the Relational Database Access Layer Framework will have the following general consequences with respect to the above forces:
Separation of concerns: The access layer forms a well-encapsulated subsystem for transactions, database access and caching. The application kernel uses a logical interface and needs no knowledge about database access.
Effort: Implementing a Relational Database Access Layer framework requires from 0,5 to 35 person years, depending on the features you include. Using generators and hard coded dependencies is cheaper than building maintenance tools and a Query Broker. Consider expected changes, time to market and the lifetime of your software before you decide for a variant. Also consider the actual requirements of your customer.
Ease-of-use: The access layer does not transform the relational model to an object-oriented view. Therefore the application kernel has to cope with the relational view as presented in the Hierarchical Views pattern. You should carefully consider whether this data driven approach matches the application logic or not. Check whether your project does better with an Object to Relational Access Layer. It is not a good idea to save the effort for a more complex access layer when the application kernel does the required mapping implicitly.
Inheritance and polymorphism: The access layer contains no built-in precautions for handling inheritance or polymorphism. Check whether this suits your problem domain.
Flexibility: If you use the Query Broker pattern, you may maintain and tune the database by adding new ConcretePhysicalViews instead of modifying application kernel code. The application code remains stable while the underlying physical database changes for tuning.
Complexity: The access layer contains mostly simple classes. The Query Broker is the most expensive item as it contains a complex tree matching algorithm. Omitting it results in a simple layer of adapters but is less flexible.
Performance: When using a database access subsystem you pay a minor run time penalty for the mapping and additional layers of software. Anyway the access layer eases tuning and optimizes using caching and eases tuning. You spend on fast processor cycles and economize on slow I/O.
Legacy data: You may use the access layer to decouple the physical and the logical data models of existing applications. This is useful to reengineer legacy applications. First you insert a database access layer into the code, which is a single step with manageable risks. Then you start to rewrite the database and the application kernel in different projects. This is also feasible for legacy database like IMS/DB.
It might be hard to understand the implications of using a framework before the framework has been explained to you. On the other hand the above forces and consequences are central for the understanding of the whole framework and will reappear in most of the single patterns that make the framework. Therefore we have factored out the above list to avoid boring you with repetitive lists of the same facts over and over again. We will later refer to the list if some special aspects need to be discussed.
Running Example
Throughout this paper we use a running example. It will help you understand the relation between the logical data model, the physical representation of data in tables and the views an application has on the data. It will also help you understand the framework by providing use cases.
Consider the excerpt of an order management system, shown in the lower part of � REF _Ref362687576 * FORMATVERBINDEN �Figure 2�. It models the entities you need to process the invoice, shown in the upper left corner. The excerpt complies to the Third Normal Form (3NF); a level of factorization, data analysts often use [� REF Lit_Date * FORMATVERBINDEN �Dat94�]. Suppose, you have used this logical data model to define your physical database tables. The system will work correctly, but you will encounter bad performance.
Profiling the system you detect many superfluous database operations. You also find slow database operations caused by large joins or by moving unnecessary large amounts of data. To increase performance you denormalize the physical data model. A statistical analysis of the database’s contents yields that ninety percent of the Orders have no more than five OrderItems. Therefore you decide to store the first five OrderItems in the Order table. To cover the remaining ten percent you create an OrderItemOverflow table as depicted in the upper right of � REF _Ref362687576 * FORMATVERBINDEN �Figure 2�. Furthermore you integrate the Article attributes ArtPrice and ArtName into the Order table. The resulting database design allows to read ninety percent of the invoices with two database accesses: one to the Order table and on to the Customer table. Besides you have eliminated all joins.
Now assume, you have embedded SQL-statements within the application kernel code. To adapt the code to the new table schemes you have to rewrite large portions of it. Furthermore, handling overflow tables lets the SQL code explode. Worst of all, you have to repeat this procedure for every improvement of the database structure.
This pattern language will help you avoid such problems.
� EINBETTEN MgxDesigner ���
Figure � SEQ Figure * ARABISCH �2�: Part of an Order Processing System
Notational Conventions
We use OMT [� REF Lit_Rumbaugh * FORMATVERBINDEN �Rum+91�] for object diagrams. Another Pattern references a related pattern. If a pattern reference is followed by a citation, such as [GOF95], you can find it in the cited paper.
�
Pattern Language Map
The „Relational Database Access Layer“ framework pattern defines roles and responsibilities for its components. It also describes the three key abstractions Hierarchical Views, Physical Views and Query Broker.
� EINBETTEN MgxDesigner ���
Figure � SEQ Figure * ARABISCH �3�: 	A Map of the pattern language. Unshaded boxes implement the „Database Access Layer Framework“. Shaded boxes are database optimization patterns.
State of the Language
This pattern language is a beginning to cover the field of access to relational databases. There’s a whole bag of tricks left for later versions. Relational database access by batches will be given more attention in future versions. There are more optimization patterns that make a good database administrator and there are more variants of the framework. Some aspects we have listed as implementation issues can also be described in more detail in future work. Some side comments may be documented as own patterns. But you have to start with something.
����Framework Pattern
Pattern: Relational Database Access Layer

Abstract
The Relational Database Access Layer Pattern Language provides a uniform mechanism for efficient database accesses and encapsulation of database system aspects. The pattern applies as a persistence mechanism for data abstraction modules.
Context
You are writing a business information system like the preceding order processing system. The relational calculus is an appropriate representation of the domain logic. The resulting data model is simple and uses inheritance sparingly. The effort of mapping the relational model to an object-oriented representation is high compared to the gains.
Problem
How do you access the relational database?
Forces
The forces influencing the design of a Relational Database Access Layer have been described above in more detail. They are:
Separation of concerns versus cost of programming.
Ease-of-use versus power of an interface.
Performance of the resulting solution.
Flexibility versus complexity.
Possible integration of legacy systems versus optimal design for non legacy data.
Solution
Use a layered architecture consisting of two layers. The Logical Access Layer provides the stable application kernel’s interface, while the Physical Access Layer accesses the database system. The latter may adapt to changing performance needs. Use a Query Broker to decouple both layers.
� EINBETTEN MgxDesigner ���
Structure
� REF _Ref368729086 * FORMATVERBINDEN �Figure 4� shows the classes of the Relational Database Access Layer. The Logical Access Layer provides classes for caching and transaction management. The Physical Access Layer represents the interface to the database system. The latter splits into the physical views, representing data access, and the Database class, which encapsulates administrative calls. Hardwired logic or - even better - a Query Broker mediates between the logical and the physical access layer.
Participants
Transaction
offers an interface that allows start(), commit()and rollback() of transactions.
is created at the beginning of every transaction. It is destroyed after a commit() or an abort(). This usage resembles the transaction object defined in [� REF Lit_ODMG96 * FORMATVERBINDEN �ODMG96�, chapter 2.8].
ViewFactory
delivers data identified by a key. Therefore it offers createView() and getView() methods to create new Views and activate existing ones. These two methods are the only way for the Client to get a reference to a View.
uses a View Cache to avoid creating Views if they already exist in the context of the current transaction.
allows predicates to identify ConcreteViews. An abstract key class ViewKey provides a standard interface for all keys.
is a Singleton [� REF Lit_GOF95 * FORMATVERBINDEN �GOF95�].
� EINBETTEN MgxDesigner ���
Figure � SEQ Figure * ARABISCH �4�:	The structure of the Relational Database Access Layer framework. The Client accesses only classes of the Logical Access Layer, which, in turn, use the Physical Access Layer to connect to the database.
ViewCache
prevents data from being loaded twice. It is a keyed Container of Views forming the access layer’s cache.
offers the writeAndFlush method, which writes all modified Views to the database using their write2DB method. The Transaction object calls writeAndFlush when it commits. Upon abort Transaction calls the flush() method to clear the ViewCache instead.
ConcreteView
is a Hierarchical View on the logical data model. There are several ConcreteView classes, each of them tailored for one or more use cases of the application kernel. Members of ConcreteViews are application data types, not raw database types�.
knows how to write itself to the database using ConcretePhysicalViews. The ConcreteView keeps track of its internal state and calls private update(), insert() or delete() methods if it receives a write2DB() message from the ViewCache. You may use a hard coded calls to suitable ConcretePhysicalViews or a Query Broker.
View
defines the abstract protocol for ConcreteViews. See also the Hierarchical View pattern.
offers a markModified() method to cause a database update when the current transaction commits.
provides the requestDelete() method to generate a database delete at the end of a transaction. Do not confuse this method with a destructor. While the destructor instantly eliminates the objects from memory, requestDelete() sets a delete flag. On end of a transaction the object is later erased from the database (and from memory). To avoid dangling references, the requestDelete() method should be the only way to delete database records.
PhysicalView
defines a uniform protocol for ConcretePhysicalViews.
ConcretePhysicalView
wraps one physical database table. It may also wrap database views. If the database does not support direct update of views, the ConcretePhysicalView also issues the appropriate write commands.
bundles database access functions, encapsulates database behavior and translates database error codes into application level errors�.
also wraps database optimization if you use Denormalization, Controlled Redundancy, or Overflow Tables. In this case a ConcretePhysicalPhysical view may map more than one table.
may be generated from meta information, such as the table structure of the database.
Database
encapsulates the database management system. Provides methods for starting database connections, issuing database commands and receiving results.
Dynamic Behavior
We shall discuss dynamic behavior with the patterns that implement the different aspects of the framework.
Consequences
When using the pattern you will come across the consequences listed in the „� REF _Ref373751682 * FORMATVERBINDEN �General Consequences�“ Section on page � SEITENREF _Ref373751660 �7�.
Implementation
Treatment of Mass Updates: Mass updates are statements of the form “update .. where”, which manipulate a set of records with a single query. It is hard to integrate these statements with the View Cache. Incorporating mass updates means: Perform a mass read into the ViewCache, manipulate single records, and write them back into the database one at a time. This solution is much slower than directly performing the task on the database.
Batches need special treatment. There is a set of patterns dealing with batch database access, which are waiting to be mined.
Multiple Read Queries: We have skipped multiple read queries. You can find further information in the Short Views and Narrow Views patterns.
Cursor Stability: There is the theoretical possibility to submit mass read operations to a BFIM (before images) consistency check. This would provide level 2 transaction consistency (cursor stability [� REF Lit_Gray * FORMATVERBINDEN �Gra+93�]) instead of level 1 (browse consistency). Mass read operations are typically used to fill list boxes (see Short Views). They have the form „select <fields> from ... where“. Checking them for consistency at commit time would mean rereading all read records read during the transaction and comparing them to their before images. If only a single record differs you have to abort the transaction. This is not only a serious threat to performance � it also does not add any value to consistency. In most cases records used to fill list boxes do not play any role that could flaw the consistency of a task. Hence, it is usually sufficient to use browse consistency for data not involved in computations during the transaction.
ConcretePhysicalViews and dynamic SQL: If the database system supports dynamic SQL without runtime penalty, you may skip the ConcretePhysicalViews and use the Query Broker to generate the appropriate SQL statements. For static SQL the ConcretePhysicalViews provide the queries.
Database Connections should remain established as long as possible. Establishing a new connecting for every Transaction shall result in bad performance.
The use of database triggers and stored procedures containing business logic is strongly discouraged with this architecture. A View Cache will not be notified about autonomous changes in the database. Hence stored procedures may cause cache consistency problems. Similar problems arise with triggers: Since they work on the physical data model it is hard to transform them to the logical level of the application kernel. However, you may use restricted stored procedures to speed up data access (see Physical Views).
Variants
Omitting the ViewCache: If you do not need long transactions, you may omit the ViewCache. This is a feasible approach for simple dialog systems supporting only the manipulation of a single record per transaction. However, you should use the ViewCache if the application kernel has a notion of transactions affecting more than one record.
A cache is the natural choice to implement user transactions on top of a transaction monitor, such as IMS, CICS, or UTM. Transaction monitors start a new transaction for every step the dialog takes while user transactions contain typically several dialog steps to complete. Using the ViewCache enables you to collect all write activities to the database that occur during a user transaction. They are later executed in a single technical host transaction preserving transaction integrity over multiple dialog steps of a transaction system.
Using non-relational Databases: The Physical Access Layer may also encapsulate non-relational databases and file formats, such as IMS-DB, CODASYL, or VSAM. You may even adapt to several different database technologies, thus hiding access to legacy data.
Related Patterns
The pattern is an application of Layers [� REF Lit_POF * FORMATVERBINDEN �Bus+96�, pp. 31]. The View Factory is an application of the Abstract Constructor [� REF Lit_Lange * FORMATVERBINDEN �Lan96�]
[� REF Lit_Kyle * FORMATVERBINDEN �Bro+96�] and [� REF Lit_ObjSpektrum * FORMATVERBINDEN �Col+96�] describe how to extend the pattern to offer an object-oriented view of a relational database to the application kernel. Brown and Whitenack [� REF Lit_Kyle * FORMATVERBINDEN �Bro+96�] use a broker to decouple the layers while [� REF Lit_ObjSpektrum * FORMATVERBINDEN �Col+96�] describes a hard-wired approach.
Known Uses
The VAA Data Manager specification uses this pattern together with editors for meta data and complex mappings for hierarchical database systems [� REF Lit_VAA * FORMATVERBINDEN �VAA95�]. The VAA Data Manger is derived from the Data Manager Architecture of Württembergische Versicherung [� REF Lit_Wuerttemberg * FORMATVERBINDEN �Würt96�].
Denert sketches some basic ideas of the pattern language in [� REF Lit_Denert * FORMATVERBINDEN �Den91�, pp. 230-239]. Many projects at sd&m used the patterns in various variants including Thyssen, Deutsche Bahn, and HYPO Bank [� REF Lit_Hypo * FORMATVERBINDEN �Kel+96a�].
The CORBA Persistent Object Services (POS) [� REF Lit_Sessions * FORMATVERBINDEN �Ses96�] specify persistent objects that use a Broker (Persistent Object Manager) to write their data to arbitrary data stores (Persistent Data Services).
����Structural Patterns
Pattern: Hierarchical Views

Abstract
Hierarchical Views is a pattern that describes a proven and common interface between an application kernel and the database access layer in a three-layer-architecture.
Example
Consider the detail of our order processing system shown in � REF _Ref362585642 * FORMATVERBINDEN �Figure 5�. There may be use cases working with invoices having the structure depicted on the right side. Note that this invoice has a hierarchical structure with two levels of indirection. The use case may start with an order number and then navigate to the various items and their articles.
� EINBETTEN MgxDesigner ���
Figure � SEQ Figure * ARABISCH �5�: 	A detail of our order processing system’s logical data model. The left side shows the E/R diagram in third normal form, the right side the structure of an invoice, composed of these entities.
Context
You have decided to use the Relational Database Access Layer to decouple your physical database from the logical data model of the application kernel.
Problem
What interface should the database access layer present to the application kernel?
Forces
Besides the general considerations listed in the Introduction you might consider the following set of forces:
Complexity and power versus development cost: The design of the interface is the central place where you can influence the power and complexity of your interface on the one hand. On the other hand this is also where you decide on the cost of implementing a powerful expensive interface.
Complexity versus ease-of-use: The more complex and powerful you design the interface for applications accessing a database, the harder it will become to program it. If your goal is factoring out database concerns you should try to hide as many of them as possible. This will result in a simple to use but less powerful interface.
Mass problems: A large data model contains hundred or more entities. Manually writing wrappers or embedded SQL-code for hundreds of entities is a boring and expensive task. Boring tasks are always error prone. A generic solution enables you to use macro expansion, generators or templates for database programming.
Solution
Express the interface in terms of the domain’s problem space, that is as relational data model. Start at one point (or entity) of the data model and use foreign key relations to navigate to the other points of interest. Construct a directed acyclic graph (DAG) during navigation. Label every node with the entity, attributes of interest and selection predicates. Label every edge with the foreign key you have used for navigation and its cardinality (one to one or one to many).
Structure
� REF _Ref369505261 * FORMATVERBINDEN �Figure 6� shows a graph representation equivalent to the invoice of the left side.
� EINBETTEN MgxDesigner ���
Figure � SEQ Figure * ARABISCH �6�: 	A detail of our order processing system’s logical data model. The left side shows the invoice known from � REF _Ref362585642 * FORMATVERBINDEN �Figure 5�. The right side shows a DAG-like description of the data contained in the invoice. Every node or leaf of the DAG represents an entity of the logical data model.
To transform this graph into a Hierarchical View, write a ConcreteView derived from View�. The ConcreteView is the root of the DAG. Define a domain level class for any one of the nodes. Use aggregation to implement to one relationships in the graph. Use containers to implement to many edges of the graph. A ConcreteView constructed this way, fills its domain level attributes from ConcretePhysicalViews. The suitable ConcretePhysicalViews may be found using hard coded knowledge or the Query Broker.
The database access layer should be able, to treat all ConcreteViews uniformly. Therefore, View defines their common interface to the other classes of the access layer.
� EINBETTEN MgxDesigner ���
Example Resolved
� REF _Ref368829576 * FORMATVERBINDEN �Listing 1� shows the declarations of the invoice example, � REF _Ref368829633 * FORMATVERBINDEN �Listing 2� contains the code to process the invoice.
Struct Customer {
	CustomerKeyType iCustNumber;
 ... // other properties of the Customer in the logical data model
};
struct Article {
	ArticleNumberType iArticleNumber;
 ... // Other properties
};
struct OrderItem {
	Article iArticle;
	QuantityType iQuantity;
};

class OrderInvoiceView : public View {
public:
	OrderKeyType		iOrder;
	Customer			iCustomer;
	Vector<OrderItem>	iItems; // Any other container will also do
	Money				iSumOfInvoice;
private:
	// private methods you need to obtain data and write data�	// to PhysicalViews

	virtual void update (void);
	virtual void insert (void);
	virtual void remove (void);
	virtual void read (void);
};��Listing � SEQ Listing * ARABISCH �1�:	The declarations for the invoice example.
The code of � REF _Ref368829633 * FORMATVERBINDEN �Listing 2� is free of database aspects and follows the logical data model. The denormalized physical data model is invisible from the application code. There are only two lines that deal with persistence: The ViewFactory::getView() command gets data from the access layer. The pos�>markModified() method tags the SumOfInvoice to write itself back to the database.
�
Void Order::processInvoice (OrderKeyType anOrder) {
	// get the data from the database. We only specify the primary key
 // and leave the rest to the access layer
	OrderInvoiceView * pInvoice = �		(OrderInvoiceView *) ViewFactory::getView(anOrder);

	// process invoice items.
	ItemIterator itemIter = pInvoice->iItems.begin();
	for (; itemIter != iItems.end(); itemIter++) {
		itemIter->iSumOfInvoice +=
			(itemIter->iQuantity *
	 itemIter->iArticle.iArticlePrice);
	}

	// the view has been changed, so mark it
	pInvoice->markModified();
}��Listing � SEQ Listing * ARABISCH �2�	Implementation of processInvoice. The example demonstrates iteration through the items of an order and sums up the prices of all items in the iSumOfInvice property. Note that we traverse two levels of indirection in the logical data model. For reasons of simplicity we omitted the transaction brackets around Order::processInvoice as well as some obvious type definitions.

Consequences
Besides the general consequences described in the Introduction the consequences of a tree like interface are:
Inheritance and polymorphism: The access layer contains no built-in precautions for handling inheritance or polymorphism. There is no thing like one view inheriting from another or a resolution of inheritance at a certain point of a view. This will work fine for most business information systems specified using soft object orientation (as practiced by Denert [Den91]). Such business information systems often use data encapsulation only but no inheritance or polymorphism. Anyway check whether this suits your problem domain.
Complexity of the interface: The interface is minimal because it offers only the basic features the application kernel needs. However, you have to invest effort in generators or templates. There may be a full pay back during tuning but it may as well take several maintenance cycles before you reach break even. Once you have finished the generators, defining new ConcreteViews is a matter of minutes.
Interface style: An application using Hierarchical Views follows the structure of the logical data model. The logical data model determines the structure of the code using it. Instead, with an object/relational access layer the object model follows the internal structure of the domain.
Ease of use and requirements of the application kernel: Hierarchical Views reflect only the domain logic while supporting exactly the navigation that the corresponding use cases need. Calling the access layer is simple because the Hierarchical Views encapsulate database specific functions.
Decoupling: Hierarchical Views completely decouple the application kernel from the physical data model. This enables you to tune the database any way you want to without affecting the application kernel’s code. The resulting performance gain is much higher than the loss caused by the additional level of indirection the Hierarchical Views introduce.
Implementation
You may define the structure of the ConcreteViews using text files or a specialized tool [� REF Lit_Wuerttemberg * FORMATVERBINDEN �Würt96�]. This allows automatic generation of the ConcreteViews for statically typed languages or even runtime definition for dynamically typed languages.
Variants
Many applications are a collection of mostly simple use cases. They need views with only a single level of indirection (like an entity and its dependent entity). In these cases the ConcretePhysical Views encapsulate the database access code and provide a sufficiently clean interface to the application, saving the Query Broker and the Hierarchical Views. However, this variant is not suitable for complex use cases that may touch a two digit number of entities in a single use case. As an example, consider insurance applications.
A more complex variant allows retrieval of historic data. You need this variant if you are not interested only in the current state of a contract but in its state at a given time [� REF Lit_Schlattmann * FORMATVERBINDEN �Sch96�]. To navigate the data model, you have to enrich conditions and navigation edges with expressions for time based navigation [� REF Lit_Wuerttemberg * FORMATVERBINDEN �Würt96�]. Insurance companies often need these features.
Related Patterns
You may use a Query Broker to decouple Hierarchical Views from the underlying Physical Views.
Use a View Cache to avoid multiple database accesses for the same physical data.
Known Uses
VAA, a standard architecture for German insurance companies, uses this pattern with time navigation [� REF Lit_VAA * FORMATVERBINDEN �VAA95�]. The corresponding Data Manager Component is currently under construction. Württembergische Versicherung [� REF Lit_Wuerttemberg * FORMATVERBINDEN �Würt96�] develops a Data Manager using Hierarchical Views and a tool to define them.
Many of sd&m’s projects have used the simple variant (1:n views) of the Hierarchical Views pattern. These projects use scripting languages to automatically generate views from view descriptions [Den91].
�
Pattern: Physical Views

Abstract
Physical Views is a pattern that shows how to encapsulate a physical database so that it can be easily accessed and optimized without affecting upper layers of software.
Context
You have decided to use the Relational Database Access Layer. You use Hierarchical Views as interface to the application kernel and you have chosen, not to incorporate database access into the ConreteViews.
Problem
How do you provide an easy-to-use interface to your physical database tables?
Forces
Simplicity versus Performance: To achieve good performance you have to optimize your physical table layout using Denormalization, Controlled Redundancy, or Overflow Tables. However, unshielded use of these techniques messes up code dealing with physical data structures and makes database access complex. Especially Overflow Tables result in intricate code. Despite of these complex optimizations you want to have an easy-to-use interface and maintainable classes.
Flexibility: Most databases offer you the choice to use either static or dynamic SQL. Because the database pre-compiles and pre-optimizes static SQL queries, it often reduces server load and yields better performance. Some database administrators allow only static SQL on their servers. A standard reason for such a policy is database security as most users do not use the built in protection mechanisms of relational databases for reasons of effort. On the other hand dynamic SQL is more flexible and easily adapts to changes in the database scheme. It is easier to use during development. To satisfy high performance requirements, you may even want to use a low level database API. Higher levels of the access layer should not be aware of these considerations.
Solution
Encapsulate every table and every view with a ConcretePhysicalView. Use these classes to encapsulate Overflow Tables and other database optimization techniques. To provide a uniform interface derive ConcretePhysicalViews from PhysicalViews.
ConcretePhysicalView use SQL-statements to store their instance data. The main difference compared to Hierarchical Views (alias ConcreteViews) is that they shield a single physical table or view instead of multiple physical structures.
Structure
� EINBETTEN MgxDesigner ���
Example Resolved
� REF _Ref369572179 * FORMATVERBINDEN �Figure 7� shows the DAG-definitions of two Physical Views that we need for our invoice example. They correspond to the physical database structure but resolve the Overflow Table (see � REF _Ref362687576 * FORMATVERBINDEN �Figure 2�). To simplify the OrderPhysicalView, it should grant update access only to the Order and OrderItem data, but not to the article information. There are other Physical Views to change the Article table.
� EINBETTEN MgxDesigner ���
Figure � SEQ Figure * ARABISCH �7�: 	DAG definitions for two ConcretePhysicalViews. Note that the OrderPhysicalView encapsulates the Order table with its overflow table OrderItemOverflow, while CustomerPhysicalView encapsulates the Customer table alone. See � REF _Ref362687576 * FORMATVERBINDEN �Figure 2� for the physical table structure.
Consequences
Simplicity: Physical Views hide the complexity of optimizations and database programming. Because they have no other responsibilities, they are easy to implement. Still, the extra layer adds additional classes. If you plan to omit the Query Broker for hard-wired connections to the ConcreteViews, you should consider carefully, whether it is easier to add the layer or whether the ConcreteViews should do the database access themselves. The latter results in less classes but also less flexibility. Thus the layer of Logical Views degenerates to a layer of Physical Views.
Flexibility: Since Physical Views encapsulate database code, it is their choice, what API they use to access the database. You may have separate sets of classes using different database APIs. If you want to experiment with different access techniques during runtime, you may even use a Bridge [� REF Lit_GOF95 * FORMATVERBINDEN �GOF95�] and switch access modes on the fly.
Encapsulation: Physical Views enable you to optimize the physical database structure without affecting upper layers. This simplifies tuning and results in better performance. The penalty of an additional level of indirection is negligible.
Mass problems: It is easy to design a generator that builds first-cut versions of ConcretePhysicalViews. As long as you use no Overflow Tables, you just have to wrap the corresponding SQL statement. More sophisticated generators may also handle Overflow Tables.
Implementation
What to encapsulate? Each ConcretePhysicalView should encapsulate a group of read/write/update/delete SQL statements on a physical table and its corresponding Overflow Table. Since Hierarchical Views refer to more than one ConcretePhysicalView, you also have the choice whether to join two tables on the database using SQL, or whether to join them in the access layer. A good point to start is to define a ConcretePhysicalView for every “root table” such as Customer and Article. Furthermore build one ConcretePhysicalView for every “compound entity”, you have defined database views for, such as the Order/OrderItem relation. If you use a Query Broker you may analyze its decisions to find further candidates.
Encapsulating read-only views: To keep the Physical Views as simple as possible you should consider, which ConcretePhysicalViews have the right to update the data they have read. Physical Views represent database views and most databases do not support writing to views. Hence, if multiple tables are involved, a Physical View with read-only access is simpler than one with read-and-write access. A good idea is to start with exactly one Physical View having write access to a certain table.
Programming Tools: ConcretePhysicalViews are generic. Use a generator or macro technique to implement them. You may also consider templates.
Use of stored procedures and other APIs: Most databases offer stored procedures to do computation on the database server. Since Physical Views work directly on the database you may implement them with stored procedures or any other API the database offers to access tuples. With this solution you may write tricky optimizations like Overflow Tables in database code instead of a host language plus embedded SQL. However, you put extra load onto the database server and you have to ensure, that all applications comply to this architecture.
Variants
If you have a hard-wired connection between ConcreteViews and ConcretePhysicalViews, you may implement ConcretePhysicalViews as methods of the ConcreteViews. However, this solution is less flexible since you are not able to use the same ConcretePhysicalView twice.
You may also use Physical Views to encapsulate non-SQL databases and file systems such as ADABAS, IMS-DB, CODASYL, and VSAM. As we have mentioned before, you may use this variant to build relational applications on top of legacy databases.
Related Patterns
For a further discussion of database optimization see the Chapter � REF _Ref373756324 \n �4�: The Overflow Table pattern describes in detail, how to partially merge tables. Controlled Redundancy contains a discussion on when to grant write access. Narrow View gives hints on Physical Views to select data.
�
Pattern: Query Broker

Abstract
A Query Broker is a very comfortable, though expensive, form of decoupling logical and physical views in a database access layer.
Example
Consider the previous example of an invoice on pages � SEITENREF _Ref373754375 �19� and � SEITENREF _Ref373754415 �24�. The OrderInvoiceView models the logical data structure while the OrderPhyiscalView and the CustomerPhysicalView model the corresponding physical tables.
Context
You have decided to use the Relational Database Access Layer. You use Hierarchical Views as interface to the application kernel and Physical Views to encapsulate database access.
Problem
How to connect the Hierarchical Views, that make the Logical Access Layer and the Physical Views, that make the Physical Access Layer for reading and writing?
� EINBETTEN MgxDesigner ���
Forces
Cost versus flexibility: The cheapest way to connect two layers is hard-wired coupling via function calls: A ConcreteView knows which PhysicalViews it has to call. You can generate the corresponding calls using compact table descriptions. This works fine as long as both layers are stable. However, if one layer is unstable you should use some form of decoupling. In the access layer we have stable Hierarchical Views on top of an unstable Physical View layer. If the system is small enough, you may use a program generator to couple both layers. Still, this approach will produce extensive costs in terms of compilation and software distribution if the system lives for several years. Consider you have to distribute megabytes of database access software to thousands of clients for every change in the physical database model.
Reusability: Though the Physical Views may change rapidly, they reflect the physical structure of the database. Therefore it as likely that several applications use the same Physical Views but different Hierarchical Views. Writing a separate coupling mechanism for every single application nullifies the gains you get from reusing the Physical Views.
Complexity: Since the hard-coded solution is not flexible enough, you need a more complex solution. However, extra complexity makes the system more expensive and harder to maintain again.
Solution
Use a Broker [� REF Lit_POF * FORMATVERBINDEN �Bus+96�] to connect the layers. The Hierarchical Views form the client side of the Query Broker, the Physical Views constitute the server side. Describe services using directed acyclic graphs (DAG) and use a tree matching algorithm to find best matches. Let the Query Broker assemble the Physical Views and deliver the result in a Query Result container.
Structure
A Broker is a standard technique for decoupling. Use the standard structure and adapt it to the Database Access Layer framework:
the most significant difference between Query Broker and a standard broker is that it usually takes more than one server to handle a request. The mapping to servers is not one to one but one to many.
� EINBETTEN MgxDesigner ���
Figure � SEQ Figure * ARABISCH �8�:	The Query Broker is a Broker adapted to the Database Access Layer Framework.
usually Brokers use symbolic names to identify services. As we have a 1:n relation between service requests and servers that fulfill them, this is not appropriate here. Therefore the Query Broker uses semantic descriptions (DAGs) to describe requested views. Consider � REF _Ref369515617 * FORMATVERBINDEN �Figure 9�. The left side shows the description of the request for the OrderInvoiceView. The right side depicts the corresponding services. To assemble the ConcretePhysicalViews the Query Broker matches the keys, tagged with white ellipses.
� EINBETTEN MgxDesigner ���
Figure � SEQ Figure * ARABISCH �9�:	Tree matching to resolve requests to the Query Broker. The left side shows the OrderInvoiceView of our order processing system, the right side depicts the corresponding two Physical Views. If the Query Broker gets the left presentation as request, it figures out that the Physical Views on the right side are the best way to satisfy the request.
Dynamic Behavior
In the following scenario an application kernel object creates an OrderInvoiceView causing a database read(). The QueryBroker handles the read() and matches a view description against available services via the matchServices() method. The QueryBroker forwards the request to two different ConcretePhysicalViews: the OrderPhysicalView and the CustomerPhysicalView. These two read() the data from the database and deliver the results by packing the data into result containers. The Broker has to merge both result containers to deliver one result to the OrderInvoiceView. The OrderInvoiceView unpacks the data into its instance variables.
� EINBETTEN Visio.Drawing.4 ���
Figure � SEQ Figure * ARABISCH �10�:	Retrieving data via a Query Broker.
Consequences
Flexibility: The Query Broker completely decouples the Hierarchical and the Physical Views. At runtime, new Physical Views may register and the associations to Hierarchical Views may change.
Complexity: The tree structured result containers, the request descriptions, and a tree matching algorithm make the Query Broker complex to design. However, the Broker is well encapsulated, restricting complexity to a single subsystem.
Reusability: Since the Query Broker is independent of the views it connects, you may implement it as part of a framework. This is even better than reusing only the Physical Views or generators.
Cost: The complexity of the Query Broker makes it expensive to implement. A run time dictionary increases the cost. Implemented in a reusable framework and used in more than one application, the Query Broker will pay off. Hard-wired coupling is cheaper to build but makes optimizations more expensive and causes nightmares when you think about software distribution among several thousand client sites.
�
Implementation
Server Registration: All ConcretePhysicalViews have to register at the QueryBroker prior to the first database access. You have to take care for it during system initialization. You may use a runtime dictionary, some other form of registry or language specific initialization techniques.
Responsibility for Casting Data Types: There are two choices, where to cast raw database types to application data types and vice versa. For example, you have to convert a CHAR(20) into an OrderKeyType and vice versa. You may assign the task of casting to the ConcreteViews as well as to the PhysicalViews. A runtime dictionary may support both alternatives, if it contains the logical data model and the knowledge which attributes to cast into which application data types.
Tree matching: Matching the DAGs is similar to code generation in compilers, where you have to find good assembler code for a program. So you may use the corresponding algorithms [� REF Lit_Drachenbuch * FORMATVERBINDEN �Aho+86�, chapter 9.2]. The Broker may even find several query plans for a request, differing in speed. The matching algorithm has to deal with ambiguous derivations and has to find the fastest solution. You have similar problems in optimizing compilers, which deal with ambiguous grammars for code generation purposes [� REF Lit_DiplArbWolfgang * FORMATVERBINDEN �Kel91�].
Query descriptions and result containers: You have to find a good representation for the DAGs, used to describe queries. On one hand the Views should be able to specify their requests and services easily. On the other hand the presentation should conform to the requirements of the matching algorithm. An easy-to-parse textual presentation is a good choice.
Variants
A further refined variant of a Query Broker allows a very flexible development process. A Query Broker that is also enabled to generate on-the-fly dynamic SQL queries can be used to substitute the Physical Access Layer during early development stages. This works fine for clean database models but becomes hard with Overflow Tables.
Later, you add more and more Physical Views using static SQL. If even this proves to be too slow, the Physical View implementations can be made even faster using the tuple interface of the database. The Query Broker shields the application kernel from such tuning. It responds to request with the fastest services he can find in his registry.
Related Patterns
[� REF Lit_POF * FORMATVERBINDEN �Bus+96�] contains a comprehensive discussion of Brokers in general.
Brown and Whitenack describe a Broker [Bro+96] on a per class basis. Note, that Query Broker is more general.
�
Known Uses
The Query Broker is a compilation of various best practices:
The VAA data manager [� REF Lit_VAA * FORMATVERBINDEN �VAA95�] defines views in terms of the logical data model. It uses a generated hard wired coupling of layers. Our experiences at HYPO-Bank [� REF Lit_Hypo * FORMATVERBINDEN �Kel+96a�, � REF Lit_ObjSpektrum * FORMATVERBINDEN �Col+96�] taught us to use dynamic descriptions wherever possible. Two projects at sd&m used other important parts of the approach.
sd&m’s LSM project used dynamic SQL, migrated to static SQL and ended up with a tuple interface. The idea was born from bad experiences with a slow database server. The project makes extensive use of a runtime data dictionary and bridges dynamic queries and pre-compiled queries completely.
The Fall/OK project for the German police uses tree matching. The software copes with queries by example on a large data model. The data model changes very rapidly.
CORBA Persistent Object Service [� REF Lit_Sessions * FORMATVERBINDEN �Ses96�] also use a Broker. Application kernel objects write their instance data to streams and a Broker (Persistent Object Manager) forwards the stream to some Persistent Object Service (database or other). Persistent Object Services may be arbitrary databases not known to the object. This is also the simple a case of a one to one mapping between service requests and servers that fulfill them.
�
Pattern: View Cache

Abstract
A View Cache prevents unnecessary database accesses by caching Hierarchical Views and avoids lost update problems by preventing that inconsistent copies of Views are created.
Context
You write a sequence of methods that uses the same ConcreteViews over and over again in a single user transaction.
Problem
How do you implement a cache for ConcreteViews?
Forces
Performance: Caching ConcreteViews can save you much time. Database access down to the physical disk level costs up to a factor of 100.000 more than an ordinary memory access. Even a well dimensioned database cache will usually not guarantee maximum performance. Databases will normally run in a process separated from user processes. To access the database cache you must access this other process. Process context switches however, are very expensive, even on a host computer. If the database process resides on a remote server, a local cache is even more important.
Correctness: Another aspect is correctness. If you do not control multiple copies of ConcreteViews that may be requested by a coincidental sequence of application kernel methods, you run into lost update problems.
Solution
Create one cache of Views per database client process. Base it on a container that maps abstract database keys to pointers to Views.
Structure
The ViewCache offers usual cache methods that allow getting a View, registering a View in the cache and flushing the cache. You should separate any concerns of transaction handling from the ViewCache and leave them to the Transaction object. Aspects of how to write a View to the database should be placed in the ConcreteView objects. ConcreteViews are accessed via the abstract View protocol class.
� EINBETTEN MgxDesigner ���
Dynamic Behavior
To illustrate the behavior of the ViewCache we will have a deeper look into what happens when executing the following code:
	// get the appropriate data
	OrderInvoiceView * pInvoice = �		(OrderInvoiceView *) ViewFactory::getView(anOrder);��The code is taken from � REF _Ref362608520 * FORMATVERBINDEN �Listing 2� above. Let’s presume the OrderInvoiceView identified by the ViewKey anOrder has not yet been loaded. The ViewFactory will first try to ask the ViewCache for the View. As the ViewCache does not hold the required View, the ViewFactory will create a new View and have it loaded with data from the database that match the given ViewKey. The ViewFactory will then register the freshly loaded OrderInvoiceView with the ViewCache and return it.
� EINBETTEN Visio.Drawing.4 ���
Consequences
Correctness: Lost updates are prevented as the same data are never accessed via two copies that do not know each other.
Implementation cost: In object oriented languages, a cache may cheaply be implemented using a hashed container like a map. If the cache must be implemented in other languages like e.g. COBOL there will be considerable implementation costs. COBOL does not have any foundation classes for containers. COBOL also does not posses a pointer concept that allows returning a reference to a cached object. If you decide to use memory copies instead of references you are again faced with a consistency problem.
Performance: The runtime penalty can be neglected compared to the penalty for a single superfluous database access. There is no memory penalty in case references or pointers are used instead of deep copies.
Implementation
The implementation of the ViewCache may be based on some Map container class.
Class ViewCache {
public:
	static void flush (void);
	static void writeAndFlush (void);
	static void registerView (ViewKey aKey, View *pView);
	static View *getView (ViewKey aKey);
private:
	static Cmap<CString,LPCSTR,View *,View *> iCache;
};��It would be even more elegant to define a cache class template, instantiate that for Views and implement it as a singleton. The header given is sufficient to demonstrate the cache’s idea.
Variants
Some host architectures use a ViewCache called Session Memory. A Session Memory may be streamed to an external data store (like a database blob) to survive the end of a session (process) and to offer transactions that may last for 30 days or more.
A Session Memory may also be used to store more sorts of data than just the database related ConcreteViews. A Session Memory is also often used for dialog data as well as other data that are needed for a process step in a workflow system.
VAA [VAA95] and also LBS2000 use a Session Memory.
Related Patterns
Brown and Whitenack describe a Cache Management Pattern [Bro+96] in less detail.
Pointers returned by the getView() method can be made safer using Smart Pointers [Mey96] or the Counted Pointers Idiom [Cop92]
Known Uses
The View Cache concept stems from Object Oriented Access layers. It may be found in various such access layers as the Champs, the EASY or the Hypo [Kel+96a] project at sd&m.
Host based architectures that need to offer long transactions for workflow processing also use the pattern. VAA calls it a Session Memory [VAA95]. The LBS2000 project also uses the pattern.
�
Pattern: View Factory

Also Known As
Abstract Constructor [Lan96]
Abstract
A View Factory provides a uniform interface to creating Hierarchical Views. You present a key to the factory and get a view in return.
Context
You are using an object-oriented language for the implementation of the Relational Database Access Layer Framework. You want to implement a single factory for all objects derived from the View abstract class. This ViewFactory should work together with the View Cache.
Problem
How do you implement a single factory for all View subclasses that determines the right subtype from the given database key?
Forces
Flexibility: The languages we are using for implementing the Database Access layer will usually not support RTTI�. However the View base class should not need to be changed when a new ConcreteView class is added.
Exception Behavior: A View Factory also has to take into account that client code needs different exception behavior for Views that have to be activated from the database (read() followed by update()) and Views that do not yet exist in the database (insert()).
Solution
Implement an Abstract Factory [GOF95] using an Abstract Constructor [Lan96] and shield it with an interface that distinguishes between new objects and objects that are activated from the database.
Structure
The ViewFactory is responsible for creating new Views and for activating existing ones. It works together with the ViewCache as explained in the View Cache pattern. The basic interface needed here is given by the following class declaration:
�
class ViewFactory {
public:
	static View * createView (ViewKey aKey);
	static View * getView (ViewKey aKey);
};��Implementation
When implementing a View Factory you may use the following patterns. The Abstract Constructor pattern [Lan96] contains a detailed description of how to implement a ViewFactory. Usually Prototypes [GOF95] are used to trick statically typed languages. As stated above in the View Cache pattern, pointers returned by the getView() method can be made safer using Smart Pointers [Mey96] or the Counted Pointers Idiom [Cop92].
Related Patterns
The Abstract Interface [Col96] is a special form of an Abstract Constructor [Lan96] or Abstract Factory [GOF95] used for decoupling purposes. Much of the deeper discussion about this pattern may be found there.
Known Uses
sd&m’s HYPO project contains a View Factory [Kel+96a].
The equivalent of a View Factory for non-object-oriented-languages is some form of memory allocation for Views. This is especially tricky for transaction systems like CICS or IMS/TM. Refer e.g. to sd&m’s Thyssen project and various other host projects if you are looking for more details.
�
Pattern: Transaction Object

Abstract
Transaction Objects provide a clearly separated interface for transactions in the context of database access layers.
Context
You applied the Relational Database Access Layer Framework. You need to define an interface for the start, commit and abort of transactions.
Problem
What will the interface for transactions look like?
Forces
Separation of concerns: An interface for transactions should separate transaction specific concerns from other concerns in the database access layer. The interface should be easy to use and easy to create. Collaboration with the exception handling mechanism is also necessary. Transactions must abort, whenever an unexpected exception arises and is not treated properly.
Solution
Use a transaction object. Have it rollback the transaction in its destructor so that open transactions are aborted in any case if not committed explicitly.
Structure
The Transaction is responsible for flushing the ViewCache when a transaction is started. During the transaction the ViewCache is filled with View objects. When a transaction is committed, the Transaction object issues a writeAndFlush() command to the ViewCache.
� EINBETTEN MgxDesigner ���
Dynamic Behavior
As an example we will show the lifecycle of a transaction object that is created by a main program. The locking strategy used is optimistic. The scenario is given by the following piece of user code.

�void main (void) {
try {
	Transaction trans;
	trans.start();
	 Order::printInvoice("47613","invoice.txt");
	trans.commit();
}
catch (...) {
	// trans is automaticaly destroyed here, resulting in an abort of the transaction
}
};��This results in the below interaction diagram.
� EINBETTEN Visio.Drawing.4 ���
Consequences
Encapsulation: The Transaction objects allows clean encapsulation of transaction behavior at the cost of a relatively simple class. The use of a class also ensures that instances are destroyed at the end of a block. Transactions cannot be left open by negligence or in case of an unexpected exception.
Implementation
The transaction object should be implemented as a Singleton [GOF95] as relational databases will usually not allow you to use nested transactions. Use the Singleton to prevent users from creating more than one (nested) transaction at a time.
You should also control the protocol of a transaction (no commit before a transaction is started) by using an internal state machine. The State Pattern [GOF95, Dys+96] may be used to avoid conditional code in Transaction objects due to dealing with internal states of the transaction like undefined, started, or aborted.
Consider using the Strategy Pattern [GOF95] if you want to give the API’s user the option to choose a locking policy for each transaction.
Variants
The interaction with the database is dependent on the locking policy used. In case of optimistic locking, the database transaction will be started just before the writeAndFlush() command is issued to the ViewCache. If the designer considers pessimistic locking more appropriate, the database transaction is started right after the ViewCache::flush() command resulting in a longer span of the transaction. Usually you will implement only one locking policy for an application. If you are building a reusable framework you should think of parameterizing the locking policy.
Related Patterns
Brown and Whitenack describe a similar mechanism, called Transactions as Blocks, for Smalltalk [Bro+96].
Known Uses
The interface shown here can also be found in the ODMG C++ language binding for object databases [ODMG96].
����A Bag of Database�Optimization Tricks
This chapter introduces a far from complete collection of database optimization patterns for use with relational databases. The Database Access Layer Framework is designed to give the developer the freedom to use these patterns without affecting the application kernel code. Physical Views are specially designed to shield upper layers from the effect of the optimization techniques to be explained in the following.
Database optimization techniques may be applied to the physical database scheme whenever the actual workload of the database requires performance improvement. This will happen in recurring intervals as changing contents and changing use of a database will require adaptation of the physical database scheme.
Where to Start with Database Optimizations
An important question about database optimization is: Where do I start improving my program and database structures to provide better performance? For example consider the following situation you might encounter in your life as a database programmer:
Users tell you the response times of system, you implemented using a relational database, are far from acceptable. After checking you find out that you do face a performance problem with dialog reaction times above three seconds. You know you are facing a database performance problem.
Whenever you run into performance trouble with an information system that is predominantly database driven, the most likely place where you will find the reasons for that trouble is database access. Checking the code and optimizing machine instructions will seldom yield significant results as database accesses count in hundreds of milliseconds while execution of code counts in nanoseconds. Database optimization however is time consuming and expensive. Database optimization requires test runs with real data and real usage conditions. People therefore often hate to attack database related problems.
So where do you start optimizing the physical database scheme?
The solution is to perform an ABC analysis and find the 20% or less of all Hierarchical Views that cause 80% or more of the databases load. Optimize exactly these using the patterns provided in this chapter. Try to handle as many of these use cases as possible with one single indexed key access. This access should best touch only a single physical page of the database.
� EINBETTEN Excel.Chart.5 \s ���
If you have optimized the critical use cases you will see an overall performance improvement. You will not see something like optimal performance for all use cases. Improvements to the most important use cases might even result in performance degradation for less important use cases. If you concentrate on important use cases you will be able to show fast results at acceptable cost.
This chapter is a bag of tricks to improve database performance. We have formulated the most likely improvements to start with as patterns. They are: Short Views, Denormalization, Controlled Redundancy and Narrow Views.
Pattern: Denormalization

Abstract
Denormalization is a technique to move from higher to lower normal forms of database modeling in order to speed up database access. You may apply Denormalization in the process of deriving a physical data model from a logical form.
Context
The analysis you have started, concentrating on important views only, shows that an Order View is one of the most heavily used views in the database. Reading an Order and the OrderItems costs a join statement and several physical page accesses. Writing it costs several update statements. Further statistical analysis, again concentrating on the important parts of orders, yields that 90 percent of Orders have no more than 5 positions.
Problem
How can you manage to read and write most physical views with a single page database access when you have a parent/child (Order/OrderItem) relation?
Forces
Time vs. space: Database optimization is mostly a question of time versus space tradeoffs. Normalized logical data models are optimized for minimum redundancy and avoidance of update anomalies. They are not optimized for minimum access time. Time does not play a role in the denormalization process. A 3NF or higher normalized data model can be accessed with minimum complex code if the domain reflects the relational calculus and the logical data model based on it. Normalized data models are usually better to understand than data models that reflect considerations of physical optimizations.
Solution
Fill up the Order entity database page with OrderItems until you reach the next physical page limit. Physical pages are usually chunks of 2 or 4K depending on the database implementation.
� EINBETTEN MgxDesigner ���
The number of OrderItems should be near or greater than the number of OrderItems that reflects the order size in 80-95% of cases.
Consequences
Time: You will now be able to access most Orders with a single database access.
Space: You need more disk space in the database depending on alignment rules. If you are lucky and the database system will begin a new page with every new order the space is even free. As you have to deal with the 5-20% or so cases of orders that do not fit into the Order/OrderItem record, the code will become more complex.
Queries: The database will also become less queryable for ad hoc queries as the physical structure does no longer exactly reflect the logical data model.
Related Patterns
Use an Overflow Table to deal with the other 5-20% of orders that have a mandatory number of OrderItems. Use Physical Views to Encapsulate the code that is needed to handle the cases of page overflow.
�Pattern: Overflow Table

Abstract
Overflow tables are a technique to preserve correctness for entities that contain a variable length set of dependent subentities and only a fixed number of spaces for such subentities as they have to be mapped to fixed length database records.
Context
You have followed the Denormalization pattern’s advice and have denormalized a relation.
Problem
What do you do with those orders that have more positions than the number that you did integrate into the Order table?
Forces
Correctness forces you to find a solution that allows you to access positions that do not fit on the Order page. A possible solution should not mess up the client code and should also be designed for good performance. The time/space tradeoff cited above is present here as well.
Solution
Use a second table, a so called overflow table, that contains another physical database page full of OrderItems. Identify the OrderItemOverflow table with a dumb number and link it to following or previous OrderItemOverflow records by fields that contain the predecessor and the following record that might contain more OrderItems.
� EINBETTEN MgxDesigner ���
Consequences
Correctness: You have solved you correctness problem at the cost of more complex code.
Time: You have achieved maximum possible speed for those orders that fit into Order/OrderItem table.
Space: The space consumption is less than optimal for such orders that use only a small percentage of an Overflow Table’s record.
Related Patterns
You should use the Physical Views pattern to encapsulate the messy conditional code that arises from handling the double linked list of OrderItemOverflow records. Denert describes Denormalization as a case study on physical database design in [Den91, pp. 285-288].
Pattern: Controlled Redundancy

Abstract
Controlled Redundancy is a technique to use redundant fields in a physical database in order to speed up reading database access.
Context
In the process of optimizing the order processing system you find out that clerks often produce a test invoice and check it at the screen before they confirm orders. They complain to you that this use case could be handled faster. From database trace protocols you find out that the queries for printing orders produce heavy database load.
� EINBETTEN MgxDesigner ���
You did denormalize the Order table. But for a normal invoice with five positions you still have 7 databases accesses. One for the order and its positions, one for the customers data and 5 primary key accesses for the article data needed for five order positions. You consider this unacceptable.
Problem
How can you manage to read physical views with a single page database access when you need to read data from a parent entity?
� EINBETTEN MgxDesigner ���

Forces
The forces involved here are the same as in the Denormalization pattern.
Solution
Replicate those parts of the parent entity (Article) in the child entity (OrderItem) that you need for the use case. Replicate only stable data that are not subject to frequent updates.
Consequences
Time: You can considerably reduce the number of database pages accessed for read operations by using Controlled Redundancy. In case of write operations to the parent entity (Article) you will need additional database accesses as you have to update more than one table to write the same (redundant) fact.
Space: You need more database space for redundant data.
Code complexity: Controlled Redundancy results in more complex code as you pull application level considerations down to the database level. A database user must know that he or she also has to update the Order table if the name of an article changes. In any case Controlled Redundancy should be shielded and controlled by a Physical Access Layer. Never clutter code that accesses such data into the application kernel.
Queries: Redundancy does not impair the understandability of a physical data model. It might even improve understandability.
Implementation
Controlled Redundancy should only be used for stable data. An article name will seldom change during the live span of an order. Redundant customer data like the customer’s name will also seldom change. It is acceptable to replicate such data. If it comes to an article price we may well start a discussion. If the price is fixed during the live span of the order, you will replicate it. If the price is subject to frequent updates you should consider the read / update performance tradeoff.
Related Patterns
Narrow Views will motivate you to replicate only the data you really need for high performance use cases.
Pattern: Narrow Views

Abstract
To apply Narrow Views means accessing only those fields in a database that are really needed for a use case.
Context
For an order processing system you want to design a dialog box to select orders by customer and to view them. You have already defined a Physical View for orders and as you have use cases that process more than one order at a time, you have implemented a readMultiple() method that delivers a set of orders for a given customer.
� EINBETTEN MgxDesigner ���

Problem
What kind of views should you use for filling list boxes?
Forces
Flexibility vs. Protection: The natural way to fill a list box is a dynamic SQL query. Such queries are most flexible and are the best fit for query by example. Anyway some database administrators will not allow you to use dynamic SQL for reasons of access protection or database load as user defined queries cannot be controlled by a central database administration. They can cross police lines in an unprotected database and might also cause uncontrollable database load in large online systems, impairing other users. So the views you need will typically be shielded by Physical Views. Each physical view is a code object. An explosion of code objects is always considered negative.
Performance: On the other hand you always want to economize on bandwidth. You want to transport only those data from the database that are really needed. This is especially important if you have a Client/Server cut between the object that consumes the data (the list box) and the object that provides the data (the database).
Solution
Use narrow views. Views for list boxes should contain the data needed in the list box and the primary key to access the object that you intend to select from the list box.
Consequences
Cost and Performance: You will have a second set of Physical Views for filling list boxes. This increases the amount of code objects in a system. On the other hand you have maximum efficiency.
Related Patterns
For reasons of clarity we have factored out the second rule for list boxes in the Short Views pattern.
�
Pattern: Short Views

Abstract
To apply Short Views means accessing only as many rows of a selection from a database as can be presented on a single screen
Context
Given the list box problem in the Narrow Views pattern you have designed a Physical View that contains exactly the data for filling the list box. Users still complain that filling a list box can take up to 20 seconds for the best customers. Good customers may have hundreds of open orders associated to them.
� EINBETTEN MgxDesigner ���
Problem
How do you speed up filling of list boxes and how do you prevent unnecessary data from being loaded into the list box?
Forces
Performance: The query that is used to fill a list box will often yield far more records than there are lines in a dialog box. Many list box classes are therefore based on a container that can handle an arbitrary number of list box items. Fetching a large quantity of records at once will have two implications: Often you might only want to see a few pages of information. In such a case a dumb query causes enormous database load. You are also blocking bandwidth while the list box is filled with lines you cannot see and worst - the user is gazing at a hourglass pointer.
Solution
Load data in chunks that allow a reasonable response time. A rule of thumb is 30-50 records for C/S system. This is equivalent to two times the number of lines in a list box.
Variants
There are two possibilities to implement the fault mechanism when the user has come to the end of the sequence of already loaded objects. If the programming environment supports database cursors (see Database Cursor for Selects [Sie96]) the list box container will simply ask the cursor for more records. If you are working with a transaction monitor that does not allow you to have open cursors over dialog steps you have to issue a new query starting from the last record you have in a listbox and yielding no more records than the fixed number you want each time you access the database.
Consequences
Performance: Using this scheme results in better response times for the user and less load for the database. Some more code is needed to implement a container that asks the database for more records. This code can well be encapsulated in a smart container behind the list box class.
Related Patterns
The easier variant to handle block reading is covered by the Database Cursor for Selects Pattern [Sie96]. The Result Streams Pattern [Bro+96] covers containers that send a request for more data if the user reaches the end of the current set.
����References
[Aho+86]	Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers: Principles, Techniques, and Tools, Addison-Wesley 1986.
[Bro+96]	Kyle Brown, Bruce G. Whitenack: Crossing Chasms, A Pattern Language for Object-RDBMS Integration, White Paper, Knowledge Systems Corp. 1995. A shortened version is contained in: John M. Vlissides, James O. Coplien, and Norman L. Kerth (Eds.): Pattern Languages of Program Design 2, Addison-Wesley 1996.
[Bus+96]	Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern Oriented Software Architecture, A System of Patterns, Wiley 1996.
[Col96]	Jens Coldewey: Decoupling, sd&m project ARCUS, technical paper, available via http://www.sdm.de/g/arcus/
[Col+96]	Jens Coldewey, Wolfgang Keller: Objektorientierte Datenintegration - ein Migrationsweg zur Objekttechnologie, Objektspektrum Juli/August 1996, pp. 20-28.
[Col97]	Jens Coldewey: A Database Access Layer for ODBMS, In Akmal Chaudri, Mary Loomis (Eds.), Experiences with ODBMS [working title], Prentice Hall 1997 (to appear).
[Dat94]	Chris J. Date: An Introduction to Database Systems, Sixth Edition; Addison-Wesley 1994
[Den91]	Ernst Denert: Software-Engineering, Springer Verlag 1991.
[Dys+96]	Paul Dyson, Bruce Anderson: State Patterns, Preliminary Conference Proceedings EuroPLoP, First European Conference on Pattern Languages of Programming, Irrsee, Germany, 1996
[GOF95]	Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Elements of Reusable Object-oriented Software, Addison�Wesley 1995.
[Gra+93]	Jim Gray, Andreas Reuter: Transaction Processing, Concepts and Techniques, Morgan Kaufmann Publishers 1993.
[Kel91]	Wolfgang Keller: Automated Generation of Code using Backtracking Parsers for Attribute Grammars, ACM Sigplan Notices, Vol. 26(2), 1991.
[Kel+96a]	Wolfgang Keller, Christian Mitterbauer, Klaus Wagner: Objektorientierte Datenintegration über mehrere Technologiegenerationen, Proceedings ONLINE, Kongress VI, Hamburg 1996.
[Lan96]	Manfred Lange: Abstract Constructor, Preliminary Conference Proceedings EuroPLoP, First European Conference on Pattern Languages of Programming, Irrsee, Germany, 1996.
[Mar95]	Robert C. Martin: Designing Object-Oriented Applications Using the Booch Method; Prentice-Hall International, London, 1996
[Mey96]	Scott Meyers: More Effective C++, Addison-Wesley 1996.
[ODMG96]	Rick G. G. Cattell (Ed.) et. al.: Object Database Standard: ODMG-93 - Release 1.2 Morgan Kaufmann Publishers, San Mateo, California, 1996.
[Rum+91]	James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William Lorensen: Object-Oriented Modelling and Design, Prentice Hall, 1991.
[Sch96]	Johannes Schlattmann: Die Anwendungsarchitektur der Versicherungswirtschaft, Historienkonzept, Entwurf, GDV Bonn, 1996.
[Sie96]	Siemens AG, Unknown Author: DB Cursor for Selects, Preliminary Conference Proceedings EuroPLoP, First European Conference on Pattern Languages of Programming, Irrsee, Germany, 1996
[Ses96]	Roger Sessions: Object Persistence, Beyond Object Oriented Databases, Prentice Hall 1996
[VAA95]	GDV: VAA � Die Versicherungs-Anwendungs-Architektur, 1. Auflage, GDV, Bonn 1995
[Würt96]	Württembergische Versicherung: Projekt Datenmanager, private communications 1995 - 1996.
[Wit96]	Andreas Wittkowski; Datenbankdesign & Performance, slide presentation, sd&m Internal Lecture Series, 1996.
�
Remarks Concerning Quality Status of the Pattern Language��Quality Assurance Status�Free to circulate inside and outside of sd&m
A set of possible further improvements is known��Initial Author�Wolfgang Keller��ARCUS Internal Reviewer�Jens Coldewey��Shepherds�Frank Buschmann, Siemens
sd&m Shepherd: Johannes Siedersleben��Writers Workshops�EuroPLoP BOF�PLoP Writers Workshop�no workshops at sd&m��Final Rewrite�done��Review Comments���Review by Andreas Mieth, June 1996:
Not sufficiently suitable for large HOST-projects. sd&m know-how about database optimization and Host access layers and batches not sufficiently covered. A pattern language might be better suited than a single pattern. The following things should get better coverage as they are important for host access layers:
Interface to the application kernel. (corrected in actual version - hierarchical views)
Iterators and Filters (comment by author: These will be covered by other patterns, partially explained in „narrow views“ and „short views“.). See upcoming papers on object/relational access layers.
Selection of records and set processing (will be subject of an upcoming series of batch patterns)
Key creation (comment by author: not scope of this pattern, the abstract ViewKey class is not further commented.)
Checking for existence of a record (comment by author: not scope of this pattern, may be added with further patterns).
Restart capabilities for batch processing (comment by author: should be covered by separate patterns)
sorting and group change for lists, sums. (comment by author: should be covered by separate patterns)
access to key tables and fast access Host table management systems like TABEX(comment by author: should be covered by separate patterns)��Wolfgangs Bug Bag
18.7.96 Aspects of batch access layers have to be taken into account. Contacted Klaus Wiemers and Gunnar Woitack for improvement propositions. No response so far
20.11.96 Better explain consequences of logical views that have common parts. In this case the view cache needs to be equipped with some logic to match partial logical views. These have to be identified by a unique identifier (OID for partial views). If this point is not taken into account, inconsistencies may appear.
��
� 	see [� REF Lit_Date * FORMATVERBINDEN �Dat94�, chapter 10] for details
�	Application data types are often used instead of raw database data types at application kernel level. They have additional methods to check their contents, reformat it, or format it for output. [� REF Lit_Denert * FORMATVERBINDEN �Den91�, chapter 5.2]
�	Most database errors are not meaningful on application level. Therefore it is a good idea to translate them. Additionally you may have to translate the error mechanism when the database uses return codes to signal errors and your application uses exceptions.
� 	You may model this approach in 3GL using structures instead of domain level classes. We shall return to this issue in the implementation section.
� 	Runtime Type Information

� TITEL * FORMATVERBINDEN �A Design Cookbook��� THEMA * FORMATVERBINDEN �for Business Information Systems�

�SPEICHERDAT \@ "t. MMMM jjjj"�2. December 1996�	Seite �SEITE �4�

� TITEL * FORMATVERBINDEN �A Design Cookbook� : � THEMA * FORMATVERBINDEN �for Business Information Systems� � KOMMENTAR * FORMATVERBINDEN ��Datei: �DATEINAME �relzs14.doc� - Version �ÜBERARBEITUNGSNUMMER �11� vom �SPEICHERDAT \@ "t. MMMM jjjj"�2. December 1996� - Gedruckt: �DRUCKDAT \@ "tt.MM.jj HH:mm"�02.12.96 12:27��Autor: �AUTOR �wk�

Relational Database Access Layers

�SPEICHERDAT \@ "t. MMMM jjjj"�2. December 1996�	Seite �SEITE �iv�

Relational Database Access Layers

Stand:	�SPEICHERDAT \@ "t. MMMM jjjj"�2. December 1996�	Status:	� KOMMENTAR * FORMATVERBINDEN ��Druck:	�DRUCKDAT \@ "tt.MM.jj HH:mm"�02.12.96 12:27�	Seiten:	� ANZSEITEN * FORMATVERBINDEN �56��Datei:	�DATEINAME �relzs14.doc�	Autor:	�AUTOR �wk�

� ZEIT \@ "' 't'. 'MMMM' 'jjjj" � 2. December 1996�	Seite � SEITE �iii�

Printed � AKTUALDAT \l �02.12.96� 	Post PLoP Version - Further improvements will be incorporated	Page � SEITE �6��Copyright (1996 by sd&m, All Rights Reserved		File: � DATEINAME * FORMATVERBINDEN �relzs14.doc�

