
Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 1

Object/Relational Access Layers
A Roadmap, Missing Links and More Patterns

Wolfgang Keller
Liebigstr. 3, 82166 Lochham, Germany

Email: wk@objectarchitects.de
http://www.objectarchitects.de/

Copyright © 1998 by Wolfgang Keller. The author hereby grants Universitaets Verlag Konstanz the
non-exclusive right to publish and distribute this paper in book form only, in the publication Titled
"Proceedings of the 3rd European Conference on Pattern Languages of Programming and Computing,
1998. All other rights not granted herein are reserved to the author.

Abstract

Designing software to connect an object-oriented business system with a relational database is
a tedious task. Object-orientation and the relational paradigm differ quite a bit. An application
that maps between the two paradigms needs to be designed with respect to performance,
maintainability and cost to name just a few requirements. Luckily there are numerous patterns
of object/relational access layers, but looking at the body of pattern literature you will find that
some patterns are still to be mined, while there's no generative "one stop" pattern language for
the problem domain. This paper provides a systematic roadmap of the patterns in the field,
and fills some pot holes on the road towards a full pattern language for object/relational access
layers by providing some missing patterns and links.

Introduction

Most large scale business systems follow a three layer architecture. They provide a user
interface layer on top of a business object layer. The business objects need to be made
persistent somehow in a persistence layer.

Views

Business Objects

Controller

Models

 User Interface

 Persistence Layer

 Application Kernel

Phoenix Persistence Service

Figure 1: Structure of Layered Architecture for Business Systems.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 2

If you want to use pure object-orientation to implement your business system you have to
decide which database paradigm to use for your system. Today you have a choice of using:

• object-oriented database systems (OODBMS),

• object/relational access layers on top of a relational database,

• or a relational database access layer, which will lead to a so called representational
business object layer. See [Kel+98a].

• object/relational databases plus an access layer. We will not write about these kinds of
applications as we don't have any practical experience with this kind of databases.

The functionality covered by the first three of the above options is depicted in Figure 2.

Relational Database
Access Layer

Object/Relational
Access Layer

Object
Access Layer

Object-Oriented
Database System

(OODBMS)

Relational Database or other DBMS

View Interface

Object-oriented Languages (C++, Smalltalk, Java, ...)

Figure 2: Three Different Kinds of Database Access Layers

This paper contains patterns or references to patterns that will help you design or understand
object/relational access layers. The paper fills some pot holes on the road towards a full
generative pattern language for object/relational access layers, and provides some missing
patterns, links to existing patterns and names the rest of patterns that have yet to be mined.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 3

Roadmap of the Pattern Language

A roadmap structures a pattern language. For object/relational access layers we draw a
roadmap according to the fields of decisions you have to make when you are designing and
using an object/relational access layer.

Object Identifier

Proxy

Object Manager

Transaction Object

Designing the Object Layer

Single Table Aggregation

Foreign Key Aggregation

Mapping Aggregation

One Inheritance Tree One Table

One Class One Table

One Inheritance Path One Table

Mapping Objects to Tables

Mapping Inheritance

Foreign Key Association

Association Table

Mapping Associations

Optimizing Performance

Denormalization

Overflow Table

Optimizing Table Structures
and Queries

Controlled Redundancy

Narrow Views

Short Views

Cluster Read

Bundled Write

Store for Forward

Optimizing General Design

Flat File Write

Building the Access Layer

Layered Architecture for
Business Informatiojn Systems Two Layer Persistence Subsystem Physical Views Host Access

Physical Views

Accessing Relational Databases

Multilayer Class

Moving Attributes
to and from the Tuple Layer

Class Broker

Central Broker

Architecting an Object/Relational Access Layer

plus local roadmap

Representing Objects as Tables Table Design Time

Figure 3: A Roadmap of Object/Relational Access Layer Patterns

Architecting an Object/Relational Access Layer1 describes how to structure an
object/relational persistence subsystem in the global context of a layered architecture for
business systems. The architecture consists of two layers: an object layer that contains the
infrastructure to persist business objects and a tuple layer that encapsulates a relational
database. Hence there are patterns for Designing the Object Layer and Accessing Relational

1 Some notational conventions: Groups of Patterns are marked as bold face. Single patterns are marked as underlined.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 4

Databases. The next task is Mapping Objects to Tables. You also have to come up with a
design for Moving Attributes to and from the Tuple Layer.

Having worked your way through the above patterns you will usually find that the
performance of the system needs to be improved–- see the patterns for Optimizing
Performance. And finally Building the Access Layer will tell you how to organize your
tasks when using an object/relational access layer.

Forces Driving the Language

The following set of forces is adapted from Accessing Relational Databases [Kel+98a]. There
are only a few more forces here than for relational access layers:

• Functionality versus cost: Besides the mandatory features of object-oriented database
systems, listed below there are also a lot of optional features. Even some of the mandatory
features are known to be expensive to implement, and some of the optional ones are even
harder. You should therefore balance the features you'd like to incorporate into an
object/relational access layer with the budget your users are willing to spend.

• Separation of concerns versus cost: Database programming is complex and so are object-
oriented programming languages. Mapping one concept to the other will add up to more
than just the combined complexity. The easiest way is to separate the application
programming from the database programming and to separate the object-oriented database
aspects from the relational database aspects. You are then able to exploit well-known
patterns for each of the problem domains. The cost of separated layers has to pay off with
increased maintainability and easier performance tuning.

• Performance: Database tuning, locking strategies and clever caching are crucial to achieve
acceptable performance of a business information system. Since a database is several
orders of magnitude slower than the main processor running the OO language you map,
tuning will concentrate on database access. Tuning is an iterative process. To optimize
database access you may change the access layer architecture and behavior, the physical
parameters of the storage system, as well as the table layout, or the API to access the
database.

• Flexibility versus complexity: Since database tuning is crucial, you want to have an
encapsulation of the database that allows frequent changes to the underlying data model
while your upper layers of software (the application kernel and most of the access layer)
remain untouched. Unfortunately, the more flexible a system is, the more complex it will
be.

• Legacy systems: You seldom develop business information systems from scratch. Instead,
you have to connect to legacy systems which you are not allowed to touch. Usually you can
not supersede the complete legacy code, because big bang strategies are risky and
expensive, but, the structure of legacy data rarely fits your needs - if it has any structure.
You may also have to bridge several generations of database technologies. To keep your
application maintainable you have to encapsulate the legacy access. This is a particular
strong force during reengineering projects.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 5

• Application style: Besides database driven business information systems there are other
types of information systems. Using a relational database as persistence mechanism for
some of these might end in disaster. Some examples are.

• CAD applications: CAD applications are used to manipulate large sets of very
complex, interrelated objects. Transactions are long. A CAD designer typically checks
out a design, works on it for hours and then checks it back into some data store.
Building such applications on top of a relational database using an object/relational
database mapping is doomed to fail. Simple pointer dereferencing in working storage
is faster by a factor 106 than joins. Relational databases are not intended for very long
transactions with a zero collision rate.

• CASE Tools: CASE tools have characteristics similar to CAD systems. IBM’s negative
experience with the AD/Cycle repository is a prominent example of what happens if
such applications are implemented on top of a relational database.

• Any check in / check-out persistence applications: The above examples can be
generalized to applications that use complex, interrelated objects, allow direct
manipulation and allow the user to check them out of a database for a longer period of
time. Such systems should be built using non-relational data stores.

Check you do not build one of the above applications before you map objects to relations.

Architecting an Object/Relational Access Layer

List of Requirements

Given that you have to use a relational database and given that you want a fully object-
oriented application kernel it is good to have a list of typical functionality for an object-
oriented database. The Object-Oriented Database System Manifesto [Atk+89] contains a very
comprehensive list of the functionality you might want to provide (see Table 1) with your
object/relational access layer.

OODMS Manifesto:
Mandatory Features

Object/Relational Access Layers:
Covered by

(1) Complex Objects Your programming language for business objects
(like C++, Smalltalk, Java, ...), your RDBMS
plus an access layer.

(2) Object Identity See Object Identity Pattern

(3) Encapsulation Your programming language

(4) Types and Classes Your programming language

(5) Class or Type Hierarchies Your programming language plus patterns for
Mapping Objects to Tables.

(6) Overriding, overloading and late binding Your programming language

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 6

OODMS Manifesto:
Mandatory Features

Object/Relational Access Layers:
Covered by

(7) Computational Completeness Your programming language

(8) Extensibility Your programming language plus patterns for
Mapping Objects to Tables.

(9) Persistence Whole access layer plus relational database
(RDBMS).

(10) Secondary storage management RDBMS

(11) Concurrency RDBMS plus patterns for transaction control and
locking strategies.

(12) Recovery RDBMS

(13) Ad Hoc Query Facility access layer on top of RDBMS

Table 1: Core responsibilities of an Object-oriented Database Management System

Most of the functionality listed in Table 1 comes with your object-oriented programming
language (like 1, 3, 4, 5, 6, 7, 8). The challenge is to make your object-oriented programming
language’s objects persistent, giving them the ability to survive the termination of the actual
process and to be used again in other (also in parallel) processes.

Therefore the other requirements are typical requirements that you find for databases (like 9,
10, 11, 12,13). See any database book for an explanation, e.g. [Dat95].

Forces Driving the Architecture

The forces driving the architecture are naturally the ones that drive the language as the
architecture represents the top level design decisions of an object/relational access layer.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 7

Local Roadmap

Layered Architecture for
Business Informatiojn Systems Two Layer Persistence Subsystem

Physical Views Host Access

Architecting an Object/Relational Access Layer

Figure 4: Local Roadmap: Architecting an Object/Relational Access Layer

Pattern List

• Layered Architecture for Business Systems: What is a good overall architecture for
Business Systems? See [Ren+97] for a discussion in pattern form and [Bus+96] for a
general discussion of layered architectures (Layers).

• Two Layer Persistence Subsystem: What is a good structure for a persistence subsystem?

• Physical Views: How do you provide an easy to use interface to your physical database
tables? See [Kel+98a] and also the Query Objects Pattern in [Bra+96].

• Host Access: How do you link you database access layer to a transaction based host
database server?

Patterns

Pattern: Two Layer Persistency Subsystem

Problem

What is good way to structure an object-oriented database or an object/relational access layer?

Forces

Remember the above discussion on Separation of concerns versus cost: Database
programming is complex, storage subsystems are complex but they are known abstractions.
Object-oriented programming languages are also proven concepts. Both have enough
complexity. Mapping one concept to the other and not dividing into further subsystems could
easily sum up to a nightmare of complexity. The easiest way is to separate the concepts of
object-orientation from those of database programming and to separate the object-oriented
database aspects from the relational database aspects. You are then able to exploit well-
known patterns for each of the problem domains. The cost of separated layers has to pay off
with increased maintainability and easier performance tuning.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 8

Application style is another force. You should be able to adapt you object persistence
subsystem to the different application styles mentioned above. It makes a great difference,
whether you intend to write a transaction oriented system or a system that can best be
described with check in/check out persistence.

Finally the possible integration of legacy data sources will have its effects on you design.

Solution

Build your system as two subsystems that form a layered structure. The upper layer, called the
object layer, encapsulates the concepts of object-orientation while the lower layer, called the
storage manager, offers a high level interface on top of your physical storage devices or file
system. A relational database in this context is just another physical storage device.

Structure

 Persistence Subsystem
Object Layer

Storage Manager

Physical Storage System

Figure 5: Two Layer Structure of a Persistency Subsystem for
Object-Oriented Programming Languages (OOPLs)

Assign the following responsibilities from The Object-Oriented Database System Manifesto
[Atk+89] to the layers.

Object Layer:

The object layer encapsulates the concepts of object orientation. It has the following
responsibilities: (1) Complex Objects, (2) Object Identity, (3) Encapsulation, (4) Types and
Classes, (5) Class or Type Hierarchies, (6) Overriding, overloading and late binding, (7)
Computational Completeness, (8) Extensibility, (13) Ad Hoc Query Facility. This is the
object-oriented programming languages part of the requirements listed in Table 1.

Storage Manager:

The Storage Manager provides an interface to a Physical Storage Subsystem. It has the
following responsibilities: (9) Persistence, (10) Secondary storage management, (11)
Concurrency, (12) Recovery, (13) Ad Hoc Query Facility. This is the database part of the
requirements listed in Table 1. The only exception is the “Ad Hoc Query Facility”. The Ad
Hoc Query Facility is a database concept that you wrap at the level of your object-oriented
language in order to offer your user the equivalent of SQL. Therefore you have to deal with
some form of Object SQL (also called Object Query Language (OQL) [ODMG93]) in both
layers.

This discussion could lead to some form of abstract pattern. Whenever you have two
paradigms that need to be mapped on one another, you can come up with an architecture that
consists of two layers. These layers contain the respective abstractions of the two paradigms,
and the upper layer (the paradigm you want to map onto another) needs some code to call the

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 9

lower layer – this code is mostly in the broker patterns (see Moving Attributes to and from
the Tuple Layer)

Consequences

Manageability and complexity: This approach breaks the problem down into manageable parts
by cutting it into two halves – and one of these, the storage manager, is not a new problem
but a kind of component with a long lasting design history.

Application Style: You can adapt your persistence subsystem to different application styles by
plugging in different storage managers. The need to adapt to transactional legacy systems will
influence your storage manager but not your object layer.

Variants

An object/relational access layer is a variant of an object-oriented database. An architectural
sketch from POET makes this quite evident. POET is an object-oriented database that uses a
relational database (plus an access layer) as its storage subsystem.

If you do not use an object-oriented database with a relational database as its storage manager
you have to build an object/relational access layer. For the rest of the paper we will use the
term tuple layer instead of storage subsystem as we use relational databases to store our
objects.

 Persistence Subsystem

Object Layer

Tuple Layer

Relational Database

Figure 6: Two Layer Structure for an Object/relational access Layer

Related Patterns

We have used the concepts of Layers [Bus+96] here. All the other patterns in this paper are
further solutions to the problems of how to build such an access layer.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 10

Known Uses

Most object-oriented databases and object/relational access layers are built this way. We have
already cited POET [POE97] as an arbitrary example. TopLink is an example that uses the
pattern in a object/relational access layer product [TOP97a,TOP97b]. There are many project
solutions, that follow the same architecture [Bar+95, Hah+95, Kel+98b, Sta+97, Wal+95].
Another use of the architecture can be found in [Hei98]. Heinckiens distinguishes an object
layer, a database layer and brokers between the two layers, which he calls Impedance
Mismatch Resolvers.

Pattern: Host Access

Example

You have to build an object/relational access layer alongside legacy applications on a host
computer. Both suites of applications, the old transaction based applications and your new
object-oriented applications should use the same host database access layer so that you have
single source on you host computer. Most off the shelf access layer products are constructed
on top of an ODBC interface. This does not combine well with a transaction system, as
running a host as a remote SQL server is not the way things are handled.

Problem

How do you connect an object/relational access layer to a host computer running a transaction
system?

Forces

Performance versus straightforward design: The straightforward design that provides access
to a relational database on a host computer is to run the host as a remote SQL server.
Unfortunately this is not fast enough and does not offer enough possibilities for tuning on a
transaction system.

Single source: You want to use access layer modules from your host applications as well as
from client applications.

Integration of legacy systems: You might want to add other legacy data sources like IMS/DB
databases or flat files.

Solution

Write all queries to a communication agent, using bundled write. Install another
communication agent on your host computer that unpacks the query packets and executes
them one by one under the control of the host transaction monitor. Send back a packet
containing query results or the return codes of the access layer modules from the host
computer.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 11

Structure

Tuple Layer Interface

Object Layer Interface

Query
Manager Query

1
Query

2
Query

3
Query

m

Client Communication Agent

IMS-TM

APPC

Access
Module 1

Host Access Layer

Database

.....

2 m

Client

Host

Host Communication Agent

Access
Module

Access
Module

Figure 7: Connecting and object/relational access layer to a host transaction system [Kel+98b]

The structure (see Figure 7) shows the following similarities and differences compared to a
normal object/relational access layer based on a remote database driver based on ODBC or
similar:

• The interface of the tuple layer remains unchanged.

• Insert a client and a host communication agent below the tuple layer. The client
communication agent bundles write queries (see bundle manager in the bundled write
pattern). The client communication agent is an object that buffers requests and does not
execute them before it is told to do so. If the other communication agent on the host side
receives a bundle of requests, it executes them one by one by calling access modules,
buffers the results and sends back a bundle of results. The client communication agent
only checks return codes and delivers results if necessary.

• Install another communication agent as a dispatcher and write it as a host transaction (e.g.
under IMS/TM or CICS).

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 12

• Have this host communication agent call the host access layer modules that implement the
functionality of your client's query objects - the query objects are proxies for the host
access layer modules.

• The host access layer modules will access the database.

Consequences

Performance versus straightforward design: This solution offers reasonable performance, as
we can see in more than one independent productive systems [Bar+95, Sta+97]

Single source: is given, as the host database modules can be used from both object-oriented
client applications and conventional host applications. A project to write the host access layer
can normally justified from the gains of productivity that result from using the host access
layer from host applications alone.

Integration of legacy systems: It is straightforward to wrap another data source than a
relational database by host access layer modules.

Related Patterns

This pattern is an application of proxies [GOF95] in the sense that the query objects on the
client are proxies for the host access layer modules. The communication agents on the host
and on the client implement bundled write.

Known Uses

The Hypo-Project [Bar+95, Kel+98b] uses this pattern as well as the Phoenix project.
TopLink offers a separate mainframe interface as a byproduct to its standard access layer
product. This is used in the Phoenix project [Sta+97] together with a host access layer written
in C.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 13

Designing the Object Layer

Forces Driving the Design of the Object Layer

The main force driving the design of the object layer are features versus cost: You can come
up with many expensive features like complex queries, nested parallel transactions and so on,
but implementing them does not come cheap.

Local Roadmap

Object Identifier

Proxy

Object Manager

Transaction Object

Designing the Object Layer

Figure 8: Local Roadmap for Designing the Object Layer

Pattern List

The patterns you need to construct the object layer have all been described in other papers.

• Object Identifier: How do you represent an object's individuality in a relational database?
See [Bro+96]. Some would doubt today that this is a pattern. The concept is described
very clearly in The Object-Oriented Database System Manifesto [Atk+89], which gives a
definition of Object Identity in the context of object-oriented databases. The same
definition is applicable for object/relational access layers.

• Proxy: How do you prevent all related objects to be loaded whenever you touch one object
that has relations to many others? See [GOF95], the unofficial version of "Crossing
Chasms" [Bro+96] and also Scott Meyers on Smart Pointers [Mey96]. See also the
Reference class in [Hei98, Section 7.5].

• Object Manager: How do you preserve object identity? See the View Cache pattern in
[Kel+98a], or the Object Manager in [You+95, pages 291-292, Max96] plus the unofficial
version of "Crossing Chasms" [Bro+96]. To understand the interactions between the
Object Manager, Transaction Objects and the objects of the object/relational access layer,
replacing the term Object Manager with View Cache, and the term object with Logical

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 14

View.

• Transaction Object: How do you handle transactions at a user code level? For a solution
see the pattern in Accessing Relational Databases [Kel+97] which was in fact adapted
from what we saw in object/relational access layers and the ODMG standard [ODMG93]
or see [Hei98, Chapter 10]

• Database Object Protocol: How do you provide a uniform protocol for all your persistent
objects? You derive them from a DatabaseObject. This is an application of abstract base
classes.

• Narrow Views and Short Views [Kel+98a]: are two patterns that should be considered,
when designing the ad hoc query capabilities of your access layer.

• Basic Relationship Patterns [Nob97] plus the ODMG-Standard [ODMG93] show you how
to implement object relationships. Mapping interobject relationships to relational
databases is treated in Mapping Objects to Tables.

Accessing Relational Databases

Forces Driving the Design of the Tuple Layer

As Mapping Objects to Tables is treated in a separate fragment of the language, the
remaining field of decisions for the tuple layer is the design of the query interface - The
dominant forces here are Ease-of-use versus power of the interface: Your interface should be
easy to use. On the other hand the complexity of a database interface stems from its power.
Hence, the interface of the databases encapsulation should be easy to use but still powerful
enough for your project. In object/relational access layers you can live with moderate
complexity as you have another layer upon your queries - your persistent objects. You should
only be forced to use SQL database queries directly in very rare cases.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 15

Local Roadmap

Relational Database
Access Layer

Hierarchical Views Transaction Object View Factory

Physical View

Query Broker

Denormalization

Overflow Table

Controlled
 Redundancy Narrow Views Short Views

encapsulates encapsulates

encapsulatesencapsulates

is refined by

is refined by

are coupled with Physical Views using

View Cache

is refined by
is refined by is refined by

Figure 9: Roadmap from Accessing Relational Databases [Kel+98a]. Merely all patterns are also found

in object/relational access layers.

If you take a fully fledged relational access layer that can also be used as a surrogate for an
object/relational access layer its interesting to see where the patterns used there are moving to
in this language.

• The Object Manager in this pattern language is the equivalent of the View Cache. So the
View Cache is moving one layer up.

• Your programming language's persistent objects are analogous to Hierarchical Views.

• You will have a persistent object factory - an equivalent of the View Factory in relational
database access layers.

• The Transaction Object exists verbatim but is moved one layer up to the object layer. See
[Kel+97] and [Kel+98b].

• The Query Broker in relational database access layers is substituted by the patterns you
need to move Attributes to and from the Tuple Layer.

• Physical Views are the core abstraction of the tuple Layer.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 16

• The performance optimization patterns below Physical Views can also be used in
object/relational access layers - they are complemented by the patterns for Mapping
Objects to Tables and some more patterns for Optimizing Performance

Pattern List

So the pattern that remains in the tuple layer is Physical Views which is also known as Query
[Bra+96]. If you want real luxury, you can also add an additional layer of Logical Views to
implement Cluster Read

Moving Attributes to and from the Tuple Layer

There is a set of patterns dealing with the question of how to move attribute values across the
border between the two layers of an object/relational access layer –- the object layer and the
tuple layer.

Forces Driving the Way you Move Attributes

The way you will move attributes from objects to queries in the tuple layer and from the tuple
layer to your objects attributes is influenced by the programming language you use. In C++
private variables are private, and unlike Smalltalk, there are no >>instVarAt methods to get
hold of private instance

Therefore C++ techniques have to be based on code generation or hand written methods in the
object layer (that is, methods which the persistent objects need to implement). This is called a
push down approach, because the objects are pushing their content to a lower layer. Smalltalk
offers rich possibilities to get information out of objects regardless whether it is public or
private, so you can economize on code quantity (no code is good code) and write access layers
that resemble a meta system (see the Reflection pattern [Bus+96]). A generic mapper can
encapsulate all the mapping meta information and pull the objects' information down to the
lower layer and stuffs it into queries it generated from the mapping meta information at run-
time.

Local Roadmap

Multilayer Class

Moving Attributes
to and from the Tuple Layer

Class Broker

Central Broker

Figure 10: Local Roadmap for Moving Attributes to and from the Tuple Layer

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 17

Pattern List

• Multilayer Class: This pattern provides a solution to the question: How do you design the
communication between the layers without extraordinary effort in C++? You do this by
generating the code to access the database into separate methods. These methods use the
tuple layer directly, without any further decoupling. This pattern Was rated a last resort
pattern at PLoP96 [Col+96b]. A last resort pattern is one that is in broad use in absence of
better solutions.

MultilayerClass

UpperLayerMethods()
LowerLayerMethods()

UpperLayerAttributes
LowerLayerAttributes

Legend:
UpperLayer

LowerLayer
LowerLayerGeneralMethods

GeneralProtocol
OfLowerLayer

LowerLayerServicescalls

Figure 11: Structure of the Multilayer Class. Shaded parts denote methods and attributes
of the upper layer (object layer). Dashed parts show lower layer (tuple layer) members

Your object's method protocol has a lower level protocol called database which contain
everything needed to push down its attributes The pattern provides a proven and often
used solution (for example in the POLAR Framework or the HYPO Framework
[Bar+95,Kel+98b]) to do things the C++ way. Bobby Woolf, our smalltalking shepherd,
was simply disgusted.

• Class Broker: Is a way to do things more the Smalltalk way by concentrating the mapping
for a class in a separate Broker class (see the unofficial version of [Bro+96]). A similar
pattern has been described as "Strong Layering" [Via+97]. Impedance Mismatch
Resolvers are also a form of Class Brokers. See also [Hei98, Section 5.4.]

Figure 12: The DBFooMgr is a per Class Broker, which is called by the Foo Object to fetch some
attributes. The DBFooMgr will call the tuple layer's Physical Views to obtain the data from the database

[Via+97].

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 18

• Central Broker: Yet another way to do things in reflexive languages like Smalltalk is to
build a central broker that evaluates classes' meta information, uses >>instVarAt to pull
out the attributes and push them into query objects, generated from the mapping meta info.
TopLink [TOP97a,TOP97b] uses this approach. The Central Broker is a Singleton
[GOF95]

Mapping Objects to Tables

Mapping Objects To Tables [Kel97] is a stand alone pattern language fragment of it's own,
that answers questions of how object-oriented constructs like inheritance, aggregation, or
relations can be mapped to the semantics of relational databases.

Local Roadmap

Single Table Aggregation

Foreign Key Aggregation

Mapping Aggregation

One Inheritance Tree One Table

One Class One Table

One Inheritance Path One Table

Mapping Objects to Tables

Mapping Inheritance

Foreign Key Association

Association Table

Mapping Associations

Figure 13: Local Roadmap for Mapping Objects to Tables

Forces Driving Mapping and Performance Optimization

The forces driving the mapping and performance optimization patterns have been in other
papers on Mapping Objects To Tables [Bro+96, Kel97, Hei98] and Accessing Relational
Databases [Kel+98a]. Space does not permit us to include these patterns here in full, so this
section contains only a brief overview.

Performance is a major consideration in object/relational if you build an access layer. To be
usable, the layer has to work fast enough. Often there are tradeoffs between Read and
write/update performance. Flexibility and maintenance cost will in most cases conflict with
complexity, so the more flexible you build a system the more complex and expensive it will
become. Performance can often be improved by redundancy and will then collide with versus
maintenance cost and normal forms of the relational model [Dat95]. Space consumption of the
database also collides with Performance of an application.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 19

The need for query processing is another force with some influence - it collides with
performance optimal mappings. For example building a data warehouse often implies
separating the queryable data from the data needed for fast online processing. And finally,
potential integration with legacy system via the database will often collide with the best
performing mapping and will add complexity if you have to integrate existing table structures.

Pattern List

• Single Table Aggregation and Foreign Key Association.: How do you map aggregation to
relational tables?

• One Inheritance Tree One Table, One Class One Table, or One Inheritance Path One
Table.: How do you map an inheritance hierarchy of classes to database tables?:

• Foreign Key Association.: How do you map an 1:n association to relational tables?:

• Association Table: How do you map n:m associations to relational tables?

• Objects in BLOBS: Solves all the above problems in one pattern.

Find all the above Patterns in [Kel+97] and also with another level of detail in [Bro+96].

Optimizing Performance

Once you have finished the first cut of your application you will almost always feel the need
to improve performance. The general pattern for this is a bit too abstract to offer real help.
Simply the fact that you would have a hard time to assign a name other than performance
optimization to it is an indicator that this a general rule - and not a pattern.

Problem

How do you optimize performance in an application using a database?

Forces

The forces here are your wish for optimal performance on the one hand and the complexity
and cost of an optimal access layer on the other hand. Other tradeoffs include memory usage
(caching) versus use of slow I/O. See [Kel97] or [Kel+98a] for extensive lists.

Solution

Try to reduce database traffic and disk I/O to a minimum that still yields a maintainable
application at reasonable cost

The above "solution" contains balancing of forces as the solution - it is therefore no ready
solution. A deeper analysis of the factors that cause bad performance leads to a series of
patterns that can be split into two categories.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 20

• Optimizing Table Structures and Queries: Can be achieved by a series of performance
patterns that you use to tune performance depending on your business objects' structure
and access behavior. These patterns deal with optimizing table structures and access
behavior. The result of applying them is usually lost for the next project.

• Optimizing General Design: Is a set of performance patterns that you incorporate in the
static design and architecture of the access layer itself. These patterns deal with optimizing
the access layer's structural design for performance If you take the layer to the next project,
that kind of tuning will be already done.

Local Roadmap

Optimizing Performance

Denormalization

Overflow Table

Optimizing Table Structures
and Queries

Controlled Redundancy

Narrow Views

Short Views

Cluster Read

Bundled Write

Store for Forward

Optimizing General Design

Flat File Write

Figure 14: Local Roadmap for Optimizing Performance

Pattern List

The first category Optimizing Table Structures and Queries has been documented in
[Kel+97]:

• Denormalization: How can you manage to read and write object clusters with a single
page database access when you have a parent/child relation?

• Overflow Table: You have followed the Denormalization pattern’s advice and have
denormalized a relation. What do you do with those objects that have more dependent
objects than the number that you integrated into the parent object's table?

• Controlled Redundancy: How can you manage to read object clusters with a single page
database access when you need to read data from a parent object's table?

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 21

• Narrow Views: What kind of database or object level views should you use for filling list
boxes?

• Short Views: How do you speed up filling of list boxes and prevent unnecessary data
from being loaded into the list box?

The other category Optimizing General Design has not been published yet:

• Cluster Read: How do you provide high performance access to large chunks of data via an
object/relational access layer?

• Bundled Write: How do you speed up the process of writing dirty objects to the database?

• Store for Forward: If you have too much data to wait for the transfer to a remote database,
how do you shorten waiting time?

• Flat File Write: How do you write a large volume of data when you cannot wait for the
database insertion?

Patterns

Pattern: Cluster Read

Example

You are programming a task that needs a large volume of data at a time. You know the
structure of these data the moment you enter the use case in which you process them. Have a
look at the invoice example below that is explained in more detail in the Accessing Relational
Database Pattern Language[Kel+98a]. Now consider you want to build an high speed online
browser for large invoices.

Customer

Order

Logical Data Model

OrderItem

Article

Invoice for Order# XY

Customer

OrderItem

Application Kernel's View

Article Quantity

OrderItem

Article Quantity

.........

must be mapped to

Figure 15: Part of an Order Processing System

It's not good idea to read an invoice object, dereference a customer proxy, dereference n order
position proxies plus n proxies for each product. This would require 1 + 1 + n + n calls to the
database over the network, consuming from 200 to 500 Milliseconds each.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 22

Problem

How do you provide high performance access to large chunks of data via an object/relational
access layer?

Forces

Performance versus complexity and cost: relational databases are missing a concept of clusters
across multiple records that allows reading larger chunks of data across tables at a time - at
least they do not support it at the level of query languages like SQL. Building something that
is able to handle larger chunks of date or clusters will increase the complexity of your access
layer.

Solution

Write a stored procedure or an access layer module that contains a series of SQL queries that
get exactly the data that you want - all at the same time.

Structure

Your Use Case's Code

Tuple Layer

Record Level Cache

Object Manager

Cluster
Read Query

Application Kernel

Object Layer

Database

Series of
Queries

calls

calls

may cache result records

or may deposit objects in the
Object Manager

Figure 16: Calling a Cluster Read Query

You call the cluster read operation (usually a module of the tuple layer) directly from the
application kernel. The module will deposits its results in a record level cache below the
object manager. It might as well create objects from the results and place them directly in the
object manager depending on the complexity of your mapping.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 23

Example Resolved

Applying the Cluster Read pattern to the above example will yield only one database request
plus a reduced number of database accesses, depending on the physical structure of the
database.

Consequences

Performance: You economize on database calls, potentially over a network and get rid of lots
of call overhead. The pattern can speed up complex use cases by up to 90%.

Orthogonality of the persistent language interface: Using this pattern introduces a new kind of
call to the application kernel's interface, that is a direct call to a cluster read. This somewhat
makes persistence less orthogonal - which is not so nice from the perspective of interface
esthetics.

Maintenance: If you "hack" cluster reads based directly on the physical database scheme, you
will get a maintenance problem when the physical structure of the database changes. This is
affordable as you usually only need a few dozen cluster reads even in large scale applications.

Related Patterns

Cluster Read is a form of request bundling and so resembles Bundled Write. It uses exactly
the idea behind Logical Views, so it is pretty common in all host based transaction systems
that handle large amounts of data for single use cases. Cluster read may also be used with
optimization patterns like denormalization, overflow tables and so on.

Known Uses

Reading data by clusters and request bundling are ubiquitous. The basic idea of Clustering is
used in many storage subsystems. The pattern in this form is used in the Phoenix Persistence
subsystem [Sta+97] by EA Generali. Complex stored procedures are used for similar reasons.

Pattern: Bundled Write

Example

You write a long transaction at user code level. Once you run your code, you load objects
from the database into your object manager’s cache. You manipulate the objects, and then you
have say 55 dirty objects in your object manager [You+95]. If you start a naive traversal of
the object manager telling each object to "write itself down to the database" this will result in
at least 55 calls to the database with all the call overheads discussed in the Cluster Read
pattern. Happy waiting!

Problem

How do you speed up the process of writing dirty objects to the database?

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 24

Forces

Performance: Implementing some bundling here is absolutely necessary - it's not even a
matter of discussing this against implementation cost. If you don't do it, performance will be
below anything that's reasonable.

Solution

Pick up all the statements generated by query objects (physical views) and send them to the
database as a single packet of statements

Structure

myTransaction commit.

Tuple Layer
Bundle Manager

Object Manager

Application Kernel

Object Layer

Database

(1) calls via some way

Write
Query

Write
Query

(2) resets

(6) queues

(3) starts

Bundled
Query

(8) starts

(4) queues

(5) starts

(7) starts

Figure 17: Calling a Cluster Read Query

The tuple layer needs to support bundling write requests. This bundle manager needs reset,
queueStatement, start, and getErrorState operations. Result handling needn't be complicated as
you never expect a result for an update or insert statement except an error code.

Example Resolved

Using the Bundled Write pattern will result in a single bundled statement issued to the
database resulting in improved performance.

Consequences

Performance: will be reasonable. By the way - what do you call a pattern that MUST be
applied in a client/server environment?

Cost: The bundle manager is straightforward and adds only little code.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 25

Related Patterns

Cluster Read is a form of bundling request. The interesting questions is, why can't you use the
identical implementation for both Cluster Read and Bundled Write. The answer is: If you
request a result of a read you want it immediately and not at some later time, when the access
layer decides to execute your query and get your objects. When you flush the object manager
at the end of a transaction (i.e. when Bundled Write occurs), you have to wait the dirty
objects must be written in a single logical transaction.

Known Uses

Most object/relational access layers use this pattern, e.g. TopLink [TOP97a] or the HYPO
Project [Kel+98b]

Pattern: Store for Forward

Example

Imagine you are using an object/relational access layer and you are committing a transaction
that contains some 100 or more changed objects that need to be written to the central remote
database. The updates will take say 20 seconds, even if you use bundled write, and you don't
want to keep your user waiting for such a long time.

communication
protocol

communication
protocol

Client Database Server

Database Access Layer Database

Large sets of dirty objects that
need to be stored

Problem

How do you prevent long waiting times when your user has changed many objects

Forces

Performance: Even if each of the update statements is processed with near optimal
performance by the database, no user likes to wait for 3 or more seconds. You have to come
up with a way to improve the performance that is felt by your user.

Correctness: On the other hand it might be necessary that all objects of the transaction you are
committing are written into the central database before you can start a new transaction. In this
case it seems your user has to wait.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 26

Security: Keeping data on a well administered server is safer than keeping them on a personal
computer - even for minutes. On the other hand, the probability that a PC crashes is not much
higher than the probability that somebody misspells something on a paper form and has to
write that paper form again by hand, but. users are less tolerant with computers.

Cost and complexity: Whatever solution you are planning - it should be affordable and
simple.

Solution

Store your data in a local buffer and give control back to your user. Have a separate thread of
execution forward your data from the buffer while your user works on the next task.

Structure

communication
protocol

communication
protocol

Client Database Server

Database Access Layer DatabaseThread 1

Thread 2bundle manager

store

forward

buffer

The user process (Thread 1) stores the data to be written in a local buffer. A background
process (Thread 2, for example a bundle manager) forwards them to the remote database.

Consequences

Performance and user acceptance of a system: If you store your data locally, the speed you
gain from this can come close to the I/O processing rate of the computer you are working on.
This is more than fast enough for most business systems.

Correctness: You have to make sure, the next transaction your user is working on does not
collide with data that you have stored for forward. The object sets should not contain any
common objects unless you flush your client cache and risk a time stamp collision.

Security: Keeping data on a PC for a few seconds is save enough in most cases - even if host
acolytes will give you a bad time for it.

Cost and Complexity: Most store for forward schemes can be made so simple that cost is
affordable. If you use bundled write for example, your bundle manager can work in a separate
thread, synchronized with your application. This is not much effort.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 27

Variants

Replicated Databases must use a store for forward scheme in order to work properly. You can
implement your own store for forward schemes by using synchronized flat files. You can also
store your data to a local database and use a forwarding job in a second thread to do the
forwarding for you.

Related Patterns

The pattern can be combined with bundled write.

Known Uses

The pattern has been used extensively in a fat client banking application by Genesys [Sta98].
Phoenix uses it for the forwarding of Error Protocols, in case the database connection is
broken.

Pattern: Flat File Write

Example

Imagine you write a batch job that processes life insurance policies. You have to process
about 60.000 policies in one or two night batches. This means you have something like 700
milliseconds per policy. An analysis of the number of tables you have to update indicates, that
each policy will cause about 70 inserts into a relational database - at 100ms per update this is
7 seconds for the updates alone - even on a very powerful host computer.

Problem

How do you handle output to a database when your database seems far too slow?

Forces

Performance of relational database against advantages of using them: There are situations
when a relational database system simply seems too slow at a first glance, but you don't want
to go back to using hierarchical database systems for the whole system just to support that one
batch job. Loading a relational database from a flat file is usually at least one order of
magnitude faster than individual inserts and updates.

Correctness versus Performance: Your results have to be correct - you cannot afford to lock
large regions of the database for days and you cannot afford to allow errors.

Cost and Complexity: The solution should work with normal hardware at reasonable cost.

Solution

Write the records to a transaction secured flat file (VSAM or the like) and load the database
from that file later. Note that this solution works for inserts only. In case of updates you have
to merge your file with another file that contains the unloaded content of your database.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 28

Structure

Batch Step One
Writes flat file

database access layer database

Large sets of objects that
need to be inserted into
the database

Batch Step Two
Loads database from
flat file

flat file

write load

Batch Job

Consequences

Performance: Your performance problem will be solved in most cases.

Correctness: Your batch should refer to only the data that you are processing, otherwise you
will have pending updates in your flat files that will result in lost updates.

Cost and Complexity: You have to design a database access layer that is able to redirect its
output to flat files. This is straightforward and not too expensive to implement.

Related Patterns

You can see this pattern as a specialized version of store for forward. You use a very fast way
to store your data in a form that is not the final one and forward them to the final destination
(the relational database) later.

Known Uses

Many large scale batch jobs use the pattern. We will use it in the Phoenix project for the batch
job described in the example. Many other insurance projects have used it so far.

Building the Access Layer

Another set of existing patterns for object/relational access layers deals with questions of the
software development process. They provide solutions for questions like "how do you do X"
or "when is it best to do X".

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 29

Local Roadmap

Building the Access Layer

Representing Objects as Tables Table Design Time

Figure 18: Local Roadmap: Building the Access Layer

Pattern List

Some patterns that can be found in literature are:

• Table Design Time [Bro+96]: When is it best to design a relational database during OO
development.

• Representing Objects as Tables [Bro+96]: How do you map an object structure into a
relational database schema.

Seeing the trouble that large projects have with a central database group that owns the
object/relational mapping process, there must be more process patterns.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 30

Problem/Solution Index of the Language

Architecting an Object/Relational Access Layer

Problem Solution Pattern Name Source

What is a good overall
architecture for Business
Systems?

Build a layered architecture
consisting of three layers:
A user interface layer, a
domain object layer plus a
persistence layer.

Layered Architecture for
Business Systems

[Ren+97]

What is a good structure for
a persistence subsystem?

Build your system
consisting of two
subsystems that form a
layered structure. The
upper layer, called the
object layer, encapsulates
the concepts of object-
orientation while the lower
layer called the storage
manager offers a high level
interface on top of your
physical storage devices or
file system.

Two Layer Persistency
Subsystem

This paper

How do you provide an
easy to use interface to
your physical database
tables?

Encapsulate every table
and every view with a
wrapper class. Use these
classes to encapsulate
Overflow Tables and other
database optimization
techniques. To provide a
uniform interface derive
the wrapper classes from a
protocol class.

Physical Views [Kel+98a]

How do you link a database
access layer to a
transaction based host
database server?

Use a communication
agent between your client
and host computer that
does request bundling.
See page 10.

Host Access This Paper

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 31

Designing the Object Layer

Problem Solution Pattern Name Source

How do you represent an
object's individuality in a
relational database?

Assign an the objects a
synthetic key that
accompanies the object
from birth to destruction.
Bury the key with the
object.

Object Identifier [Bro+96],
[Atk+89]

How do you prevent all
related objects being
loaded whenever you touch
one object that has
relations to many others?

Use a Smart Pointer (or
Proxy) containing an
Object Identifier plus a
memory pointer that is
instantiated with NULL
whenever a Proxy is
instantiated.

Proxy [GOF95],
[Bro+96],
[Mey96].

How do you preserve object
identity?

Create a cache of objects
per database client
process. Base the cache
on a container that maps
Object Identifiers to
pointers to Objects
(Proxies).

Object Manager [You+95,
pages 291-
292, Max96],
[Bro+96]

How do you handle
transactions at a user code
level?

Make a transaction an
object. Give it operations
like begin, commit,
rollback.

Transaction Object [Kel+97]

Accessing Relational Databases

Problem Solution Pattern Name Source

How do you provide an
easy to use interface to
your physical database
tables?

Encapsulate every table
and every view with a
wrapper class. Use these
classes to encapsulate
Overflow Tables and other
database optimization
techniques. To provide a
uniform interface derive
the wrapper classes from a
protocol class.

Physical Views
also known as Query

[Kel+98a]
[Bra+96]

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 32

Moving Attributes to and from the Tuple Layer

Problem Solution Pattern Name Source

How do you move object’s
attributes between layers of
a system?

Extend a single class over
both layers, forming a
Multilayer Class.
Unambiguously assign
every member of the class
to one layer, using a
naming convention.
Relieve the Multilayer
Class from as many lower
layer responsibilities as
possible and encapsulate
them in separate classes.
Prefer to use call
dependencies over
inheritance.

Multilayer Class [Col+96b]

How do you move objects’
attributes between layers of
a system?

Create another object for
each upper layer object
that has the responsibility
to move the attributes up
and down.

Class Broker [Bro+96]

How do you move object’s
attributes between layers of
a system?

Create one object for all
upper layer objects that
has the responsibility to
move the attributes up and
down.

Central Broker [TOP97a,TOP
97b]

Mapping Objects to Tables

Problem Solution Pattern Name Source

How do you map
aggregation to relational
tables?

Put the aggregated
objects’ attributes into the
same table as the
aggregating object’s

Single Table Aggregation [Kel97]

How do you map
aggregation to relational
tables?

Use a separate table for
the aggregated object.
Insert an Object Identifier
into the table and use this
object identity in the table
of the aggregating object to
make a foreign key link to
the aggregated object

Foreign Key Aggregation [Kel97]

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 33

Problem Solution Pattern Name Source

How do you map an
inheritance hierarchy of
classes to database tables?

Use the union of all
attributes of all objects in
the inheritance hierarchy
as the columns of a single
database table. Use Null
values to fill the unused
fields in each record.

One Inheritance Tree One
Table

[Kel97]

How do you map an
inheritance hierarchy of
classes to database tables?

Map the attributes of each
class to a separate table.
Insert an Object Identifier
into each table to link
derived classes rows with
their parent table's
corresponding rows.

One Class One Table [Kel97]

How do you map an
inheritance hierarchy of
classes to database tables?

Map the attributes of each
class to a separate table.
Add the attributes of all
classes the class inherits
from to a class’s table.

One Inheritance Path One
Table

[Kel97]

How do you map an 1:n
association to relational
tables?

Insert the owner object’s
OID into the dependent
objects table. The OID
may be represented by a
database key or a Object
Identifier.

Foreign Key Association [Kel97]

How do you map n:m
associations to relational
tables?

Create a separate table
containing the Object
Identifiers (or Foreign
Keys) of the two object
types participating in the
association. Map the rest
of the two object types to
tables using any other
suitable mapping patterns
presented in [Kel97].

Association Table [Kel97]

How do you map objects to
a relational database?

Use a table containing two
fields: One for the synthetic
OID and a second one for
a variable length BLOB
that contains all the data
an object holds. Use
streaming to unload the
object’s data to the BLOB.

Objects in BLOBs [Kel97]

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 34

Optimizing Performance

Problem Solution Pattern Name Source

How can you manage to
read and write object
clusters with a single page
database access when you
have a parent/child
relation?

Fill up a parent entities
database page with child
entities records until you
reach the next physical
page limit.

Denormalization [Kel+97]

You have followed the
Denormalization pattern’s
advice and have
denormalized a relation.
What do you do with those
objects that have more
dependent objects than the
number that you did
integrate into the parent
object's table?

Use a second table, a
overflow table, that
contains another physical
database page full of child
entities records.

Overflow Table [Kel+97]

How can you manage to
read object clusters with a
single page database
access when you need to
read data from a parent
object's table?

Replicate those parts of
the parent entity in the
child entity that you need
for a use case. Replicate
only stable data that are
not subject to frequent
updates.

Controlled Redundancy [Kel+97]

What kind of database or
object level views should
you use for filling list
boxes?

. Views for list boxes
should contain the data
needed in the list box and
the primary key to access
the object that you intend
to select from the list box.

Narrow Views [Kel+97]

How do you speed up filling
of list boxes and how do
you prevent unnecessary
data from being loaded into
the list box?

Load data in chunks that
allow a reasonable
response time. A rule of
thumb is 30-50 records for
a C/S system. This is
equivalent twice the
number of lines in a list
box.

Short Views [Kel+97]

How do you provide high
performance access to
large chunks of data via an
object/relational access
layer?

Write a stored procedure
or an access layer module
that contains a series of
SQL queries that get
exactly the data that you
want – all at a time.

Cluster Read This paper

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 35

Problem Solution Pattern Name Source

How do you speed up the
process of writing dirty
objects to the database?

Pick up all the statements
generated by query objects
(physical views) and send
them to the database as a
single packet of
statements

Bundled Write This paper

If you have to much data, to
wait for the transfer to a
remote database. How do
you shorten waiting time?

Store your data in a local
buffer and give control
back to your user. Have a
separate thread of
execution forward your
data from the buffer while
your user works on the
next task.

Store for Forward This paper

If you have to write so many
data, that you cannot wait
for the database inserts,
what do you do?

Write the records to a
transaction secured flat file
(VSAM or the like) and
load the database from
that file later.

Flat File Write This paper

Building the Access Layer

Problem Solution Pattern Name Source

How do you map an object
structure into a relational
database schema

Begin by creating a table
for each persistent user-
defined object in your
object model ... for the rest
see [Bro+96]

Representing Objects as
Tables

[Bro+96]

When is it best to design a
relational database during
OO development.

Design the tables based on
your object model after you
have implemented it in an
architectural prototype but
before the application is in
full-stage production

Table Design Time [Bro+96]

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 36

Glossary

The following is a glossary of terms that might not be familiar to people who do shiny new
stuff only and have never been confronted with the “old world” of host systems.
CICS: CICS is a general-purpose online transaction processing (OLTP) software system by IBM.

CICS is an application server that runs on a range of operating systems from small desktops to
large mainframes, and which meets transaction-processing needs, whether you have thousands
of terminals or a client/server environment with workstations and LANs. CICS, as a transaction
system takes care of the security and integrity of your data while looking after resource
scheduling, thus making effective use of your resources. CICS integrates basic software
services required by OLTP (Online Transaction Processing) applications. For more details see:
http://www.software.ibm.com/ts/cics/

Host: In IBM and perhaps other mainframe computer environments, a host is a mainframe computer
(which is now usually referred to as a "large server"). In this context, the mainframe has
intelligent or "dumb" workstations attached to it that use it as a host provider of services. (This
does not mean that the host only has "servers" and the workstations only have "clients." The
server/client relationship is a programming model independent of this contextual usage of
"host.") (Source: http://whatis.com/)

IMS: IMS is a family of products by IBM. IMS/DB is a hierarchical database system (see also
[Dat95] for some more information). IMS/TM (TM for Transaction Monitor) is an online
transaction processing system like CICS, just another product line. Many mainframe shops
started as CICS or IMS shops. In the meantime many run both systems. For more details see:
http://www.software.ibm.com/data/ims/

ODBC: Open Database Connectivity (ODBC) is a standard or open application programming interface
(API) for accessing a database. By using ODBC statements in a program, you can access files
in a number of different databases, including Access, dBase, Excel, and Text. In addition to the
ODBC software, a separate module or driver is needed for each database to be accessed. The
main proponent and supplier of ODBC programming support is Microsoft. ODBC is based on
and closely aligned with the X/Open standard Structured Query Language (SQL) Call-Level
Interface. It allows programs to use SQL requests that will access databases without having to
know the proprietary interfaces to the databases. ODBC handles the SQL request and converts
it into a request the individual database system understands. (Source: http://whatis.com/)

Persistence: Is the ability of objects to survive termination of the process they were created in. Or in other
words the property of a programming language where created objects and variables continue to
exist and retain their values between runs of the program

Recovery: In the event of an application or system failure (for example, if there is a power loss and the
computer system shuts down), when the system restarts, any uncompleted work that was in
progress at the time of shutdown, including changes to data, must be backed out to a point
where the system was last in a consistent state. This is called Recovery.

Transaction Monitor: A program that manages or oversees the sequence of events that are part of a transaction is
sometimes called a transaction monitor. When a transaction completes successfully, database
changes are said to be committed; when a transaction does not complete, changes are rolled
back. In IBM's CICS product, a transaction is used to mean the instance of a program that
serves a particular transaction request. (Source: http://whatis.com/transac.htm)

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 37

VSAM: Virtual Sequential Access Method is a file management system for IBM's larger operating
systems, including its primary mainframe operating system, MVS (Multiple Virtual Storage),
now called OS/390. Using VSAM, an enterprise can create and access records in a file in the
sequential order that they were entered. It can also save and access each record with a key (for
example, the name of an employee). Many corporations that developed programs for IBM's
mainframes still run programs that access VSAM files (also called data sets). VSAM succeeded
earlier IBM file access methods, SAM (Sequential Access Method) and ISAM (Indexed
Sequential Access Method). Today, although VSAM is still provided in support of legacy
applications, IBM emphasizes DB2, a relational database product, and many customers use
database products from Oracle, Sybase, Computer Sciences, and other companies. (Source:
http://whatis.com/)

References
[Atk+89] Malcolm P. Atkinson, François Bancilhon, David J. DeWitt, Klaus R. Dittrich, David

Maier, Stanley B. Zdonik: The Object-Oriented Database System Manifesto. in "Deductive
and Object-Oriented Databases", Proceedings of the First International Conference on
Deductive and Object-Oriented Databases (DOOD'89), pp. 223-240

[Bar+95] Christian Barschow, Petra Hieber, Wolfgang Keller, Christian Mitterbauer: Persistente
Objekt unter Berücksichtigung bestehender relationaler Datenbanken, Internal Technical
Report, HYPO Bank, München 1995.

[Bra+96] John Brant, Joseph Yoder: Reports, in “Collected Papers from the PLoP’96 and
EuroPLoP’96 Conferences„,Washington University, Department of Computer Science,
Technical Report WUCS 97-07, February 1997.

[Bro+96] Kyle Brown, Bruce G. Whitenack: Crossing Chasms, A Pattern Language for Object-
RDBMS Integration, White Paper, Knowledge Systems Corp. 1995. A shortened version is
contained in: John M. Vlissides, James O. Coplien, and Norman L. Kerth (Eds.): Pattern
Languages of Program Design 2, Addison-Wesley 1996.

[Bus+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal:
Pattern Oriented Software Architecture - A System of Patterns, Wiley 1996.

[Col96a] Jens Coldewey: Decoupling of Object-Oriented Systems - A Collection of Patterns; sd&m
GmbH & Co.KG, Munich, 1996; available via http://www.sdm.de/g/arcus/

[Col+96a] Jens Coldewey, Wolfgang Keller: Objektorientierte Datenintegration - ein Migrationsweg
zur Objekttechnologie, Objektspektrum Juli/August 1996, pp. 20-28.

[Col+96b] Jens Coldewey, Wolfgang Keller: Multilayer Class, in „Collected Papers from the PLoP’96
and EuroPLoP’96 Conferences„, Washington University, Department of Computer Science,
Technical Report WUCS 97-07, February 1997.

[Dat95] C. J. Date: An Introduction to Database Systems, Sixth Edition; Addison-Wesley 1995.

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Elements of
Reusable Object-oriented Software, Addison-Wesley 1995.

[Hah+95] Wolfgang Hahn, Fridtjof Toennissen, Andreas Wittkowski: Eine objektorientierte
Zugriffsschicht zu relationalen Datenbanken, Informatik Spektrum 18(Heft 3/1995); pp. 143-
151, Springer Verlag 1995

[Hei98] Peter M. Heinckiens: Building Scalable Database Applications, Addison-Wesley 1998.

[Kel97] Wolfgang Keller: Mapping Objects to Tables: A Pattern Language, in „Proceedings of the
1997 European Pattern Languages of Programming Conference, Irrsee, Germany, Siemens
Technical Report 120/SW1/FB 1997.

Object/Relational Access Layers

© Wolfgang Keller 1998 – 2004 page 38

[Kel+97] Wolfgang Keller, Jens Coldewey: Relational Database Access Layers: A Pattern Language,
in „Collected Papers from the PLoP’96 and EuroPLoP’96 Conferences„, Washington
University, Department of Computer Science, Technical Report WUCS 97-07, February 1997.

[Kel+98a] Wolfgang Keller, Jens Coldewey: Accessing Relational Databases: A Pattern Language, in
Robert Martin, Dirk Riehle, Frank Buschmann (Eds.): Pattern Languages of Program Design 3.
Addison-Wesley 1998.

[Kel+98b] Wolfgang Keller, Christian Mitterbauer, Klaus Wagner: Object-oriented Data Integration:
Running Several Generations of Database Technology in Parallel; in Akmal Chaudhri, Mary
Loomis (Eds.): Object Databases in Practice, Prentice Hall 1998.

[Max96] John Maxfield: A Distributed Virtual Environment for Synchronous Collaboration in
Simultaneous Enginnering, Technical Report, The Keyworth Institute of Manufacturing and
Information Systems Engineering, 1996.

[Mey96] Scott Meyers: More Effective C++; Addison-Wesley 1996.

[Nob97] James Noble: Basic Relationship Patterns, in „Proceedings of the 1997 European Pattern
Languages of Programming Conference, Irrsee, Germany, Siemens Technical Report
120/SW1/FB 1997.

[ODMG93] Rick G. G. Cattell (Ed.) et. al.: Object Database Standard (ODMG 93); Morgan Kaufmann
Publishers, 1993.

[POE97] Frank Thelen, Jörg Beckert: POET SQL Object Factory - Technical Overview;
http://www.poet.com/sql_tech_over.htm, POET GmbH, 1997

[Ren+97] Klaus Renzel, Wolfgang Keller: Three Layer Architecture in Manfred Broy, Ernst Denert,
Klaus Renzel, Monika Schmidt (Eds.) Software Architectures and Design Patterns in
Business Applications, Technical Report TUM-I9746, Technische Universität München, 1997.

[Via+97] Mauricio J. Vianna e Silva, Sergio Carvalho, John Kapson: Patterns for Layered Object-
Oriented Applications, in „Proceedings of the 1997 European Pattern Languages of
Programming Conference, Irrsee, Germany, Siemens Technical Report 120/SW1/FB 1997.

[Sta+97] Herbert Staudacher, Michael Harranth: Dokumentation der Datenpersistierung von
Phoenix, Internal Technical Documentation, EA Generali, Vienna 1997.

[Sta98] Herbert Staudacher: Personal Communications over many many coffees, 1997-1998.

[TOP97a] The Object People Inc.: TOPLink Version 4.0 - A White Paper;
http://www.objectpeople.com/, 1997.

[TOP97b] The Object People Inc.: TOPLink Version 4.0 - User Manual, 1997.

[Wal+95] Kim Walden, Jean-Marc Nerson: Seamless Object-oriented Software Architecture, Prentice
Hall 1995.

[You+95] Ed Yourdon, Katharine Whitehead, Jim Thomann, Karin Oppel, Paul Nevermann:
Mainstream Objects, An Analysis and Design Approach for Business; Prentice Hall 1995.

