

Object-Oriented Data Integration
Running Several Generations of Database Technology in Parallel

Wolfgang Keller, Christian Mitterbauer, Klaus Wagner.

Abstract

Large IS shops often work with three or more generations of database technology. It is
very common to find some pilot projects, using object technology while the mass of
software is still being produced using 3GL technologies and relational databases. Parallel
to this application portfolio, older applications have to be maintained. These applications
often use hierarchical or even older database technology. In most cases hierarchical
databases still manage the main workload of commercial data processing. It is therefore
important to be able to federate all the above generations of database technology.

Object-oriented application development has to be able to reach data provided by other
software generations. This may not result in changes to older applications. Object-
oriented databases as a technology are not sufficient to provide this kind of parallel data
integration. This article introduces an integration framework for several generations of
database technology. The framework can be filled with multiple categories of database,
middleware and other products. These are introduced and discussed in a separate
section.

As an example we will discuss a solution of the data integration problem for a large
German financial institution, using an object-oriented access layer for heterogeneous
databases. The focus here was on integration of all existing data sources. Object-oriented
client/server applications have to coexist with classical host environments. This article
features special conditions and requirements that can be found in a large IS shop. These
requirements and the characteristic software environments that can be found there still
rule out most commercially available integration products such as access layer products
or object-oriented databases with relational gateways.

About the authors

Dipl.-Inform. Wolfgang Keller is a consultant with sd&m, software design & management GmbH
& Co. KG in Munich/Germany. Dipl.-Inform. (BA) Christian Mitterbauer works for Bayerische
Hypotheken- und Wechselbank AG also in Munich/Germany. Dr. Klaus Wagner is also a
consultant with sd&m. Authors can be reached via the Internet: Wolfgang.Keller@sdm.de,
cmitterbauer@mail.hypo.de and Klaus.Wagner@sdm.de.

This work has been partially sponsored by the German Ministry of Research and
Technology under contract 01 IS 508 A 0 . We would like to express our thanks. Special
thanks to Dr. Thomas Becker for proof-reading. You must have had a horrible time
Thomas.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page i

Contents

1 Introduction 1

2 Integration Frame 3

2.1 Programmers View 3

2.2 Layered Model 5

2.3 Object Layer 6

2.3.1 Functional Units 6

2.3.2 Discussion 7

2.4 Tuple Interface 8

2.5 Restrictions of an Integration Model 8

2.6 Further Reading 9

3 Product Categories 9

3.1 Remote Database Access Products 10

3.2 Objectified Relational Databases 10

3.3 Federated Databases 10

3.4 Object-Oriented Databases with Relational Gateway 10

3.5 Object-Oriented Access Layers 11

3.6 Object/Relational Databases 11

4 Case Study - Persistent Objects in a Large Bank 12

4.1 Situation, Requirements and Software Environment 12

4.2 Why Products Still Fail 13

4.3 Our Architecture 14

5 Experiences and Summary 16

6 References 17

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 1

1 Introduction

Many large IS organizations, like e.g. banks, are facing an introduction decision
for object technology. Some or most have collected first experiences with object
technology and have started pilot projects. This results in a coexistence problem of
old and new technology generations. Big bang replacement strategies are seldom
ever used and are not advisable for large IS shops [Bro+95]. Most likely,
migration will take 10 or more years to complete. Several generations of software
technology will have to coexist during such a time span. Old data resources will
probably live on even longer than that.

Host applications will have to coexist with object-oriented client/server
applications. Decoupling the two branches of development is essential. It is not
realistic to expect that that there will be a clean separation of data resources for
different generations of software development technology. Enterprise data models
have been invented to provide tight integration of information systems over an
organization and not to provide separate islands of data. They are still an
enormous source of benefit for IS organizations. Nobody believes that this
integration will be thrown away just because some new technology crops around.
Technological renovation has to go along with solid business advantages.

The above factors result in larger IS shops being confronted with three to four1
generations of database technology that have to be tightly coupled.

- We will use the term first generation for hierarchical database systems like e.g.
IMS-DB. Hierarchical databases often still manage the main workload of
commercial data processing.

- The second generation are relational databases like e.g. DB2. Most larger IS
shops use at least generations one and two. The second generation is often still
in the process of replacing the first one.

- Object-oriented database management systems (OODBMS) [ODMG93,
Kim95, Cat94] can be seen as generation three. Products that can be found here
are at the brink of use for mission critical applications. Some have well passed
that border. Most IS shops still use them only in pilot projects if at all.

1 Most large IS shops also use VSAM ore similar file systems instead of database systems to a signifficant
extent. This could be called the zero generation of database systems - resulting in four generations of database
technology that have to integrated.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 2

The developer, regardless of whether the language is C++, Smalltalk, COBOL or
PL/I, should be confronted with only that image of the enterprise data that
conforms to his or her technology generation. Advantages of enterprise data
models should not be thrown away. The same data resources must be useable by
conventional host applications and object-oriented applications at a time. The data
resources must be readable and writeable by all other technology generations.
„Writeable“ especially is the prime killer criterion for many integration products.
Solutions are highly non-trivial.

The market for object-oriented database technologies is still small and unstable
compared to the market for relational databases. Six months can be seen as a
normal innovation cycle. This explains why many experts have given up writing
books on the topic - they tend to be outdated the day they appear in a bookstore. IS
managers can be as good as sure, their solution is technically outdated the very
day it is implemented.

That is why we plead for a clean separation of concerns in any solution for an
object data integration problem. This will allow projects to react to market
movements by installing cheaper or better components than the ones selected for a
first solution at project startup time.

There is no such thing as only one solution for the object-oriented integration of
database technologies. But it is nevertheless possible to provide an integration
model that is valid for many solutions in many different software environments
and for many different constellations of specific requirements. Such a frame is
then filled up with available components from the market that are integrated with
self-written glue. The final choice of components for a specific project is
dependent on the chosen project and the enterprise’s own installed software
environment consisting of database systems, programming languages, transaction
monitors and middleware components. A limit for possible project costs and
investments will usually be set by protential positive financial impacts the project
is expected to have on business. The choice of products will also depend upon the
actual object-oriented databases and integration software on the market at project
start time.

Section 2 will introduce a proven integration model for data resources of various
ages. Product surveys would be outdated the day they are written. This is why
section 3 will list product categories instead of actual products. We will show
how these categories can be integrated in our solution framework. Section 4
contains an application case study. The architectural framework has been used to
create persistent client objects in a typical financial institution’s software
environment. The model has been extracted from project experience and not the
other way round. This article summarizes some 5 years of experience gained in
various data integration projects in our companies practice.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 3

2 Integration Frame

The object data integration model describes a software architecture that provides
persistency2 for objects. This also allows to provide persistency for object-oriented
applications on top of legacy data resources. The architecture can best be
compared with an architecture for a very simple3 object-oriented database system.
The salient feature is the possibility to store data in arbitrary legacy data stores
such as relational or hierarchical database systems. This provides an object-
oriented integration mechanism for several generations of database technology.
An integration of distributed data can also be supported.

One of the very slick features of object-oriented database systems is to give a
programmer the impression of having to deal with objects only. Any database
details are hidden as much as possible. An object-oriented database system will
first provide a persistent programming language together with typical database
features such as independence of data from a programming language, transactions,
locking and more.

We will therefore first show a programmer’s view of our integration model. After
that we will discuss the internal structure of the integration frame.

2.1 Programmers View

The programmer’s view is illustrated by an example of a typical interface for
persistent objects in C++. This interface is as similar as affordable to the object-
oriented database standard [ODMG93]. The example does by far not contain all
possible constructs of the ODMG specification. A relatively small subset has
proven sufficient for real world projects. Expensive constructs4 such as OQL
[ODMG93] have not been implemented. Our example is in no way complete. The
user code example is there to present the basic ideas of a persistent programming
language.

2 Persistency is the property of objects to survive termination of a process and to be alive in the next process
started, if required to do so [Atk+83, Sou94].
3 The degree of reduction of functionality compared to an OODBMS depends on the possible investment in
an object layer. In case of an OODBMS with a relational gateway that fits into the given environment, the
functional properties are not worse than those of any OODBMS except maybe performance. In case of a
custom solution it would be too expensive to implement advanced features like e.g. OQL, schema evolution,
nested transactions, lanuguage mappings and such that should be part of an OODBMS.

4 Expensive features to implement are e.g. OQL, schema evolution, nested transactions, lanuguage mappings.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 4

void example (String CustomerName) {

try // database errors are handled by C++ exceptions

Transaction trans; // create a transaction and
trans.begin() // start it

// Declaration of some variables for our example
Ref<Customer> oldCustomer; // Ref is a smart pointer to a persistent

// object
Set<Ref<Order>> orders; // Set<Ref<Order>> represents a set of

// persistent objects

// Fetch a Customer
oldCustomer = Customer::getByName(CustomerName); // This will only load

// and check an ObjectId and assign a smart pointer. It’s
// a database method.

// Dereferencing a set of orders
Orders = oldCustomer->confirmedOrders; // The Orders variable

// is assigned a whole set of confirmedOrders.

// Create a new customer
Ref<Customer> newCustomer = new(Customer);

newCustomer->Name = someValue // the newCustomer object is changed
// by assignment of a value to an instance variable.

// Assignment of whole set of orders
newCustomer->confirmedOrders = oldCustomer-> confirmedOrders;
newCustomer->markModified(); // marking object dirty

// results in object to be written to the database
// at time of next commit

// Delete oldCustomer
oldCustomer->requestDelete();

// Finish transaction and commit it
trans.commit()

}

catch ... // Error handling has to take place - but is not shown here
};

Figure 1: Sample User Code

The following actions are presented in Figure 1:

- Getting an oldCustomer by name from the database
- Dereferencing the customers confirmedOrders
- Creation of a new Customer instance by assigning the freshly created object to

a smart pointer.
- Assigning a whole set of orders at a time.
- Deleting a Customer object by requesting its deletion.

One thing is invisible here - relational database code or actions. The application
programmer’s view of persistent objects is very similar to his or her view of
volatile objects. The visible difference is methods like getByName, markModified
or requestDelete and smart pointers (Ref<SomeType>). The methods are
acquired by protocol inheritance from an abstract base class PersistentObject. This

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 5

interface is not the ideal vision of a persistent object’s interface where persistent
objects cannot be discriminated from volatile objects. For a further discussion of
the above interface see [ODMG93].

2.2 Layered Model

The apparatus necessary for implementing the above interface is comparable to an
object-oriented database system with heavily reduced functionality. In the
following the term object layer will be used for a system providing an interface
like the above.

Object Layer Interface

Object Layer

Tuple Layer Interface

Tuple Layer

Remote Database

Local DatabaseMiddleware

Figure 2: Persistent Objects Integration Model

Data is not stored in an OODBMS’s data management system but in legacy
database systems like RDBMS or hierarchical database systems. Therefore we
need an interface that presents data from more than one database in relational
tuple form secured by transactions. In the following this will be called the Tuple
Layer.

The corresponding layered architecture is shown in Figure 2. The object layer’s
services are described in more detail in section 2.3. Section 2.4 lists requirements
that have to be fulfilled by a tuple layer. The above model serves as an integration
frame or architecture for a custom solution as well as for product solutions. The
above frame can be filled with prefabricated or self-written components. Section
 3 describes product categories for prefabricated components. These components
span very different parts of the integration frame.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 6

2.3 Object Layer

The object layer could be implemented using an OODBMS, a prefabricated
framework or a custom solution. Each possible solution should be close to the
[ODMG93] standard. The functional units are always similar. Figure 3 provides
an overview of the important functional units in an object-oriented access layer.

Meta
InformationOID

Manager

Object Table, Smart Pointers
Transaction Management

Object Mapping

Filters
Iterators

Figure 3: Functional Units in an Object-Oriented Access Layer

2.3.1 Functional Units

If legacy data sources are to be integrated, an object layer has to use some kind of
tuple layer as its storage medium. This is why an integration architecture differs in
its architecture from OODBMS products. The tuple layer offers an interface to
relational tuples over primitive data types. Abstractions like e.g. complex data
types, inheritance and relations are unknown at this level. They have to be
implemented by the object layer.

Hence the object layer has to provide the following services to map full-fledged
objects to a tuple layer:

- Complex data types and objects must be assembled from primitive data types.
This involves casting raw data types into application data types as part of the
Object Mapping.

- Mapping tuple fields to object attributes must happen with respect to
inheritance and inter-object relations. This is also done by the Object Mapping
with the help of Meta Information.

- Object identities have to be constructed from key fields at the tuple layer’s
level. The OID Manager takes care of this part.

- Associations at object level are built using foreign key fields and relation tables
at the tuple layer level. This is done by the Object Mapping in collaboration
with the OID Manager.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 7

A description of all internal details of an object layer is beyond the scope of this
article. There are several articles5 that deal with special aspects of building an
access layer in more detail.

Besides the services described above, further services have to be provided by an
object-oriented access layer:

- There should be objects for Transaction Management.

- The identity of objects in volatile memory must be guaranteed by an Object
Table [Hah+95].

- A Smart Pointer [Str91] mechanism is needed to prevent large chunks of
objects from being loaded into volatile memory if a first object is touched that
has transitive associations with a great number of other objects [Kel95b].

- There should be efficient support for list boxes. List boxes are typically filled
with a selection of a few attributes from a very large set of objects. With
respect to low bandwidth of today’s client/server communications lines in wide
area networks, it does not make sense to load complete objects for presentation
in list boxes. Instead only the portion needed out of all possible attributes
should be loaded. Blocked read operations should deliver only as much records
as can be seen in a list box at a single time. Filters are used as a surrogate for
OQL queries. Smart and lazy Iterators are used to browse the result sets of
those queries.

2.3.2 Discussion

Object-oriented database products are sufficient in a pure object-oriented target
environment. Such products may be evaluated using the object-oriented database
standard [ODMG93] as a reference model.

If relational or hierarchical data sources have to be used and if data resources must
be used in parallel with existing legacy applications, shrink-wrapped products can
hardly be found. Detailed knowledge of interfaces between an object layer and
storage management facilities is needed to evaluate products in this category. The
cut between object layer and storage mechanisms might run right through a
product. If a storage manager is to be substituted or written in such a situation,
deeper knowledge of object-oriented versus relational storage concepts is needed.

5 The different building blocks are described in more detail in an array of papers by different authors. See e.g.
[Col+95, Hah+95, Kel95a, Kel95b, Kel+95, Lip95] if you are interested in more details.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 8

Different product categories and their role in our integration architecture are
discussed in Section 3.

2.4 Tuple Interface

A Tuple Layer [Col+95] is able to deliver a unified relational view upon relational
and hierarchical data sources. Some user transaction construct is also provided.
The task is comparable to a subset of a federated database system[Kim95]. A tuple
layer should be able to cope with the following requirements:

- At least read, insert, update, delete and read multiple operations should be
supported for each tuple presented by the Tuple Layer. These operations are
identical to a simple relational access layer that is used in many non-object-
oriented projects.

- The physical source of data is hidden by the Tuple Layer. The Tuple Layer
provides a view of a single integrated database.

- The Tuple Layer is able to map hierarchical data resources to relational tuples.

- The Tuple Layer is able to provide transparent user transactions over multiple
database systems. This is not a trivial task if data sources from more than one
server are involved. In general a 2-phase-commit would be needed for this task.
It is also not a trivial task if transaction servers like e.g. CICS or IMS-TM hosts
are being used.

There are several options for implementing a Tuple Layer. The choices include
federated database systems [Kim95], DRDA products [Orf+94] and remote-SQL-
interfaces for less challenging requirements. The term Middleware in Figure 2 is
used to sum up these choices. Depending on the power of products more or less
attention for this middleware block is needed. Available product categories are
also discussed in Section 3.

2.5 Restrictions of an Integration Model

Using the above integration model for mass updates6 does not make too much
sense. Executing mass updates at an object layer level could mean replacing
efficient mechanisms of underlying legacy databases by inefficient treatment of
single records at object layer. If an access layer is to be used for any kind of batch
processing this has to be analyzed very thoroughly. If the analysis shows that the

6 SQL statements of the kind“update where“ are denominated as Mass Updates. One statement is able to
manipulate large sets of records.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 9

access layer will be too inefficient for such a task one should consider bypassing
the access layer and coding embedded SQL statements straight into object
methods. This requires special attention with regards to object identity and
transaction integrity. Access layers are best suited for dialog processing. The
typical work sequence here is selecting an object from a listbox, manipulating it
and committing changes to the database. So in most cases only one or a few
objects are written.

Batch processes on the other hand should be executed as close as possible to the
original database. This means also executing them on the database server and best
not on a remote client. In case batches are suitable for processing with an access
layer (no mass updates or only mass updates that can be coded into isolated object
methods), a second instance of the access layer stack can be compiled and
installed on a central database host [Col+95].

2.6 Further Reading

It is not surprising that there is no such thing as a monograph dealing with the
subject of this article. Partial aspects are treated in numerous articles. Some
authors discuss the situations when best to use relational and when best to use
object-oriented databases [Bur94, Kim95, Sto94]. Persistence mechanisms can be
classified by their storage mechanisms and preferred use of objects (complex
versus simple) - see [Kim95, Sou94]. The problem of how to integrate relational
and object-oriented database technology is being discussed in many articles e.g.
[Bur94, Kim95, Gra95] to quote a few. Mapping objects to relational databases
has also been discussed extensively. Sample sources here are [Hah+95, Kel94b,
Pre+94]. Architectures for access layers have been published in [Hah+95,
Kel+95, Lip95, NeXT].

3 Product Categories

There are numerous products on the market that can be used to implement parts of
the integration frame described above. This section will facilitate the search for
products by giving an overview of existing product categories. Some components
that are needed for an individual legacy data integration project might already be
implemented in your enterprise. They must be identified and can then be reused
for object-oriented data integration. We are not able to give even a nearly
complete list of products here. The market for integration and middleware
products is moving too fast. This is why we concentrate on product categories and
give some prominent product examples. But we do not claim to be able to
enumerate even a significant portion of all possible products.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 10

3.1 Remote Database Access Products

RDA (Remote Data Access)- Products [Orf+94] enable access to a remote
relational database over a network. They allow a client to execute SQL-statements
on a remote server. RDA products can be used to implement parts of a tuple layer.
RDA products will seldom offer access to more than one vendor’s database at a
time or in parallel. They are rarely suited for distributed transactions or even
access to hierarchical databases.

3.2 Objectified Relational Databases

Objectified relational database products will offer an object-oriented view7 of a
relational database system. Typical objects that are offered by such class libraries
are relation, query, view or similar terms. Most of these frameworks need an
additional RDA product using dynamic SQL to provide their services. These
products are also suited to implement parts of a tuple layer. Typical products that
fall into this category are e.g. Rogue Wave’s DBtools.h++ [www.roguewave.com]
or a similar data access framework by Taligent [Cot+95].

3.3 Federated Databases

Federated database systems will provide a unified view of several, physically
independent databases [Kim95]. They offer the user an illusion of using only one
database system while using multiple databases in parallel. IBMs DRDA
architecture [Orf+94] implements aspects of a federated database system.
Federated databases might have to unify different SQL dialects while offering
their own SQL interface. Some systems also allow integration of hierarchical data
(DRDA). Federated systems can again be used to implement parts of a tuple layer.
As product examples we can quote IBMs DataJoiner [www.software.ibm.com-
/data/dbtools/datajoin.html], , UniSQL/M [www.unisql.com] or IBMs DRDA
architecture in general [Orf+94].

3.4 Object-Oriented Databases with Relational Gateway

A few object-oriented database systems offer a so-called relational gateway to
their products. This gateway is usually implemented by installing a special storage
manager that replaces the normal storage manager for certain objects of the
database. Many vendors offer adapted storage managers as tailored project

7 Typical objects that are presented to the libraries users are e.g. Table, Row, Query, etc.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 11

solutions in addition to their OODBMS. It should be straightforward to tailor such
a storage manager for an arbitrary tuple layer, as long as it has been possible to
implement it for any reasonable tuple interface.

An OODBMS plus relational gateway could be a turn-key solution for our
integration problem. This should not lead to euphoria as problem points like
integration of hierarchical database systems, reengineering of existing data
resources, problems of object identity and the coupling with host transaction
systems have to be checked thoroughly. Classical host environments can seldom
be supported.

Product examples that fall in this category are ONTOS [www.ontos.com] or
Hewlett Packard’s Odapter (object adapter) products for their OpenDB
architecture.

3.5 Object-Oriented Access Layers

There is also a category of products that offers the programmer an interface
similar to that of an OODBMS but exclusively uses external database systems (or
better data sources) as storage mechanisms. These systems do not have their own
low level storage management component. The critical points to look at are again
support for host databases (like IMS and DB2) and the question of collaboration
with transaction systems like IMS or CICS.

Some typical products that can be named here are Persistence
[www.persistence.com] or NeXT’s Enterprise Objects Framework
[www.next.com].

3.6 Object/Relational Databases

Besides OODBMS there is yet another family of database systems that claims to
provide object-oriented data management - object relational databases [Kim95].
These databases expand relational databases by providing user defined data types,
inheritance, stored procedures and further constructs. The differences, advantages
and disadvantages with respect to object-oriented databases are e.g. discussed by
Kim [Kim95]. Object relational databases have their own emerging standard -
SQL3. Together with an access layer object relational database systems might be
used to implement the integration model’s object layer. Some products (like e.g.
UniSQL [www.unisql.com]) also offer database federation at the level of the tuple
interface. This can also be used to implement services of the integration model.
Illustra [www.illustra.com] is another object relational product.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 12

4 Case Study - Persistent Objects in a Large Bank

As an application example we will discuss the specific solution for the legacy data
integration problem that has been implemented in a large German bank. First we
will have to list the requirements relevant to the solution and the software
environment that could be found. The use of turn-key solutions was made
impossible by an array of factors that will also have to be named here. This
resulted in a solution that will be presented in the following.

4.1 Situation, Requirements and Software Environment

The project is a part of a larger effort to introduce object technology in a large IS
shop. It is one task to provide persistence for C++ objects.

The data resources created cannot only be isolated new databases. As in most
large organizations, existing data resources from hierarchical or relational
databases have to be used. The integration solution has to provide good
decoupling of conventional software development from object-oriented pilot
projects while both development tracks are using the same integrated data
resources. The access to legacy data must not lead to any changes in existing
applications. Even recompilation would be too expensive.

The software and hardware environment that could be found is typical for a large
IS shop. A client/server concept incorporates a central MVS-host that will play the
role of an enterprise server. The programming environment for this host is IMS-
TM, PL/I, DB2 and IMS-DB. Clients run OS/2 and have been programmed in C
before and will now be programmed in C++. Clients are clustered in LANs. Each
LAN has its own array of LAN servers that concentrate traffic with the enterprise
server. The client/host connection is implemented using APPC. A client
programmer needs an integrated view of the enterprise’s data resources. The
situation can be summarized as a multi-layer client/server model.

9.600 baud telephone lines between branch offices place serious restrictions on the
degree of carelessness one can afford concerning communication bandwidth. This
resulted in the use of compression schemes, blocked data transfers and maximum
lazy access schemes. The pilot solution for persistent objects will be promoted to
an enterprise standard after some successful pilot projects.

The project’s task was to create a programming interface for persistent objects in a
new software development environment. This interface had to be as close as
possible to the object-oriented database standard specification [ODMG93] to
allow migration to off-the-shelf products later. As usual with persistent languages,

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 13

the programmer mustnot be annoyed with database details. What he or she sees
are straight persistent objects.

4.2 Why Products Still Fail

It has always been our goal to avoid a custom solution. We would have preferred
products as system software development is seldom ever the core business of a
financial institution. This is why quite a lot of products were evaluated. This
evaluation phase ran in parallel to the specification of a custom solution to use
time gains by simultaneous engineering. However, the evaluation phase did not
produce any products that were suitable for use in the given software and
hardware environment. The reasons for that provide a good basic checklist for
similar evaluation efforts:

- Most solutions do not support DB2 [Orf+94]. If the OS/2 variant DB2/2 is
supported the solutions will use dynamic SQL [Sal93] in most cases. The use
of dynamic SQL for central host databases is still forbidden by convention in
many DB2-MVS shops. This is motivated by internal control procedures,
authorization schemes and control of transaction load many of whom are based
on the use of static SQL.

- No product on the level of the object layer was able to read or even write IMS-
DB from our client platform OS/2.

- Most object layer products that offered a relational gateway were able to work
with arbitrary legacy table schemes for object storage, inheritance and storing
relations. Many products were designed for forward engineering and not for
reengineering badly structured legacy data sources.

- The notion of object identity [Cat94] plays an important role in OODBMS. If
products need to insert a new object identity into existing tables, they cannot be
used in parallel to existing applications. Legacy applications don’t know how
to treat an additional field. They would have to be changed to update the new
OID field. This is normally too expensive when thousands of legacy programs
can be involved.

- We did not find a single product that was able to deal with data sources that run
under a host transaction monitor (like e.g. CICS or IMS-TM). The special
challenge that results from using such transaction systems is the different
length of transactions on client and host. Each call to a host running a
transaction system in transactional mode results in committing all open
transactions on return of the call. This has to be mapped to long user
transactions by using dirty reads and deferred updates and some further
measures.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 14

- None of the products was able to deal with multi-server client/server
architectures (LAN servers plus MVS enterprise servers) and 2-phase-commit.
This is a necessary long term requirement in the environment we found.

The above problems prevented us from using off the shelf products.

4.3 Our Architecture

With no shrink-wrapped solutions in sight, a custom solution had to be composed
from products at hand. Figure 4 gives an impression of the solution’s architecture.
This solution follows the architecture already described in Section 2. We will only
discuss those aspects here that had to be tailored with respect to existing software
components or special requirements. We will describe the architecture following
the layered model from bottom up.

Data access on DB2/MVS is done using conventional access layer modules. These
are programmed in PL/I and generated from description files. The access modules
offer the usual functionality of a relational access layer (read, insert, update,
delete, read-multiple). The modules can also be used by non-object-oriented host
applications. This alone has been an improvement compared to the old host
architecture that did not incorporate a separate access layer.

Host access modules are called from the client sites via a transaction monitor
(IMS/TM). No extra remote database access product for DB2 has to be installed.
The price of this is some extra communication software. Coming from the client
side, write operations have to be bundled in packages and are executed no earlier
than at the client transaction’s commit time. The bundling results in several update
operations to be executed in a single IMS transaction. This can best be compared
to on-the-flygeneration of a batch program. Buffering is provided by
communications agents. APPC is used instead of DRDA [Orf+94] products, like
e.g. DDCS/2. This may look strange at a first glance. But if license costs +
installation costs - programming effort - maintenance effort are taken into
account, this solution can be cheaper than shrink-wrapped products. This will not
hold for each and every IS organization and any number of licenses - but it should
be recalculated for each business case or project.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 15

Tuple Layer Interface

Object Layer Interface

Query
Manager Query

1
Query

2
Query

3
Query

m

Communication Agent

see figure 2

IMS-TM

APPC

Access
Module 1

Host Access Layer

Database

.....

2 m

Client

Host

Communication Agent

Access
Module

Access
Module

Figure 4: Project Example for an Object Data Integration Problem

A set of query objects on the client forms a tuple layer. Query objects are
objectified access layer modules. In a manner of speaking, they are proxies for
access layer modules on the remote server. Arbitrary queries are made possible by
using a query server concept. Possible hard-coded dependencies between higher
layers and queries are cut off by this server concept that can be compared to a
broker architecture. Special precautions are necessary with respect to slow
communication links connecting clients and server. Multiple reads can be
executed using blocked transfers and reread by need mechanisms.

The object layer is constructed using the principles outlined in section 2. As
before, no product could be used as most products are based on dynamic SQL as

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 16

the interface paradigm for the tuple layer. having to use an MVS enterprise server
with expensive existing security and administration structures, it was not an option
for a pilot project to restructure central IS procedures. Anyway, a customized
storage manager project solution offered by OODBMS vendors would not have
been any cheaper than the solution chosen.

A techical note at the end: Similar projects and the requirement to use static SQL
have suggested the use of code generation also for C++. This is tempting at first
sight but comes back as a maintenance and flexibility boomerang after some time.
Runtime repositories and templates are to be preferred to code generation. This
can be confirmed by a look at other architectures [Kel+95, Lip95, Wal+95,
NeXT].

5 Experiences and Summary

The above architecture has produced good results in a first pilot project. It is a pity
that we could not find suitable products in the first half of 1995 that fit a typical
software environment for a large IS shop. As far as we know the situation has not
significantly improved until now. There should be a considerable market for
integration technologies, especially in large shops with a predominantly blue
software environment.

Considering the very short innovation cycles in object-oriented database
technology, the modularization of a solution can not be overstressed. Clear
interfaces close to standards allow to exchange custum-made parts or glue with
commercially available software as soon as better solutions appear on the market.

Integration products should be checked rigorously before use. The above
architecture, product categories and project experiences should be helpful for an
evaluation of products.

Factors that look marginal at first glance can turn out to be real expensive cost
drivers. Such factors are add-ons that have nothing to do with direct database
functionality, such as integration of an access layer into a security system.
Classical transaction systems offer a wide range of control mechanism that may
have to be reimplemented at a horrendous price.

A conventional database access layer for PL/I applications has been an important
windfall profit of the project. A generator system for conventional database access
modules alone can justify the rest of the costs of an integration solution.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 17

6 References
[Atk+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott,

R. Morrison: An Approach to Persistent Programming, The
Computer Journal, 26(4), 1983.

[Bro+95] Michael L. Brodie, Michael Stonebreaker: Migrating Legacy
Systems, gateways, Interfaces & The Incremental Approach,
Morgan Kaufmann Publishers 1995.

[Bur94] D. K. Burleson: Practical Application of Object-Oriented
Techniques to Relational Databases; John Wiley & Sons 1994.

[Cat94] Rick G. G. Cattell: Object Data Management; Addison-Wesley
1994.

[Col+95] Jens Coldewey, Wolfgang Keller: Objektorientierte Datenzugriffe
auf dem VAA Datenmanager, GDV Bonn, 1995 - also on
Compuserve, GO CASEFORUM, File oozs.doc.

[Cot+95] Cotter, Pottel: Inside Taligent Technology, Addison Wesley 1995.
[Gra95] Ian Graham: Migrating to Object Technology, Addison-Wesley

1995.
[Hah+95] Wolfgang Hahn, Fridtjof Toennissen, Andreas Wittkowski:

Eine objektorientierte Zugriffsschicht zu relationalen Datenbanken,
Informatik Spektrum 18(Heft 3/1995); pp. 143-151, Springer
Verlag 1995

[ODMG93] Rick G. G. Cattell (Ed.) et. al.: Object Database Standard
(ODMG 93); Morgan Kaufmann Publishers, 1993.

[Kel95a] Wolfgang Keller: Problems Reengineering RDBMS to Object-
Oriented Databases, Compuserve , GO CASEFORUM, File
oidpr.doc.

[Kel95b] Wolfgang Keller: Associations in Object-Oriented Access Layers,
Compuserve, GO CASEFORUM, File relpro.exe.

[Kel+95] Michael Keller, Thomas Stalzer: Ein Erfahrungsbericht über den
Einsatz von VisualAge und Vaser, OBJEKTspektrum, Vol 2(4),
Juli/August 1995.

[Kim95] Won Kim (Editor): Modern Database Systems, ACM Press 1995.
[Lip95] Peter Lipps: Enterprise Objects Framework - Fachspezifische

Objekte in Open Step, OBJEKTspektrum, Vol 2(5),
September/Oktober 1995.

[NeXT] NeXT Inc.: Several product descriptions on NeXT Enterprise
Objects Framework can be found in WWW entering from http://
www.next.com.

[Orf+94] Robert Orfali, Dan Harkey: Client/Server Survival Guide; Van
Nostrand Reinhold 1994.

Object Oriented Data Integration

Work in Progress, Printed 26.03.2001 Page 18

[Pre+94] William Premerlani, Michal R. Blaha: An approach for reverse
engineering of relational databases; Communications of the ACM,
May 1994, p42(9).

[Sal93] Joe Salemi, PC Magazine's Guide to Client/Server Databases;
Ziff-Davis Publishing, 1993.

[Sou94] Jiri Soukup, Taming C++ - Pattern Classes and Persistence for
large Projects; Addison-Wesley, 1994

[Sto94] Michael Stonebreaker, Object-Relational Database Systems,
Proceedings ObjectWorld 94, London 1994.

[Str91] Bjarne Stroustroup: The C++ Programming Language (2nd.
Ed.), Addison Wesley 1991.

[Wal+95] Kim Walden, Jean-Marc Nerson: Seamless Object-Oriented
Software Architecture, Prentice Hall, 1995.

[www.xxx.com] marks references to World Wide Web sites that contain
product information on products quoted in this article

Work in Progress, Printed 26.03.2001

White Paper

Object-Oriented Data Integration

Running Several Generations of Database
Technology in Parallel

Wolfgang Keller, sd&m
Christian Mitterbauer, HYPO-Bank
Dr. Klaus Wagner, sd&m

also appeared in German, ONLINE 1996, International
Congress , Hamburg, Article Number C 644

Work in Progress

Munich March 1996

sd&m
software design & management
GmbH & Co. KG
Thomas-Dehler-Straße 27
D 81737 München
Germany
Phone +49-89- 6 38 12 - 210
Fax +49-89-6 38 12 - 490

	Introduction
	Integration Frame
	Programmers View
	Layered Model
	Object Layer
	Functional Units
	Discussion

	Tuple Interface
	Restrictions of an Integration Model
	Further Reading

	Product Categories
	Remote Database Access Products
	Objectified Relational Databases
	Federated Databases
	Object-Oriented Databases with Relational Gateway
	Object-Oriented Access Layers
	Object/Relational Databases

	Case Study ˚ Persistent Objects in a Large Bank
	Situation, Requirements and Software Environment
	Why Products Still Fail
	Our Architecture

	Experiences and Summary
	References

