Some Patterns for Insurance Systems

Wolfgang Keller
c/o EA Generali, Neusetzgasse 1, A1100 Wien, Austria
Email: 100655.566@compuserve.com
http://www.objectarchitects.de/|

Abstract

Building flexible insurance systems that allow short product release cycles is a challenge for
many insurance firms. Despite the huge market and the many projects that do near identical things
these projects are still a little bit like black magic. There’s virtually no literature around on the
topic. This paper provides a collection of patterns that help explain the basic forces and solutions
for the design of product driven insurance systems.

Introduction

With the arrival of deregulation and more competition in the insurance market, shorter product
innovation cycles may give you a leading edge in the very competitive financial services market.
Service providers try to expand to new product fields, allowing cross sales. They try to offer
individual products in order to serve niche markets and in order to serve their existing customers
better. At the same time the need to reduce costs calls for flexible systems that allow achieving
the above goals with acceptable maintenance cost.

Systems used in the financial industry to achieve this set of goals show great similarities. The so
called product driven approach can be found in the banking as well as in the insurance industry.
This approach is borrowed from traditional manufacturing industries [Ech+96]. The significant
difference is that you produce your article (an insurance) the very moment you have entered the
proposal into your system. Financial products are intangibles.

Analogies in Other Industries

This paper provides a collection of patterns for flexible, product driven insurance systems that
can be found in many systems in the insurance and financial industry. It is very likely that many
of the patterns apply identically in other industries - but as the patterns here were mined in
insurance projects we will not speculate how they can be applied elsewhere without practical
project knowledge in those other domains. If somebody writes up similar patterns from other
industries we will be able to compare and match them.

The core pattern Product Tree - the idea to represent products as a tree structure - stems from the
manufacturing industry. It has only recently moved to the insurance industry (some 10 years - see
[Ech+96]). The idea to configure individual products the way the customer wants them using a set
of predefined building blocks can also be found in the manufacturing and other industries. There

Copyright © 1998 by Wolfgang Keller page 1
permission is granted to PLoP to make arbitrary copies for conference use

http://www.objectarchitects.de/

are several approaches called mass customization that heavily rely on information technology to
deliver mass customized products [And+97]. Popular examples can be found in the computer
industry - personal computers made t e.g. by DELL or VOBIS and can also be found in the
clothing industry (Levy Strauss and others).

Individual immaterial products can also be found in the telecommunication industry. Billing plans
can also be configured from predefined building blocks using technologies very similar to product
tree and product server[lonogh].

This paper is not a full pattern language. There are many ways to model a product [Sch+96], where
we only present one of them (Object Event Indemnity).

Existing Reference Models for the Insurance Industry

Many readers who are interested in the field might know 1AA - IBM's Insurance Application
Architecture - and might wonder how the material presented in this paper is related to it. As IAA
is proprietary material with a solid price tag, and as | don't have access to it - except secondary
sources - | cannot discuss the relation of the material presented here to IAA in any detail. Sorry
about that, but not my fault. So we can only refer to VAA [[zaA95], a public domain reference
model by the German insurance industry, wherever that is possible.

General Forces Driving Insurance Application Design

The set of forces that drives the patterns to be presented is mostly identical. They are:

Time to Market and Flexibility: In Europe the insurance market has been heavily regulated by
government agencies until recent times. With the advent of deregulation, global markets and a
European market, insurance companies find themselves in a new dimension of competition: New
competitors include banks and other providers of financial services, insurance companies from
neighboring countries and many others. In fierce competition time to market plays a dominant
role. Companies that are able to design and market more products faster and are also able to offer
individual products have a competitive advantage over companies that need years to bring a new
product to the marketplace.

New and individual products: Michael Porter distinguishes between several competitive strategies
. You can become a cost leader, a quality leader or a niche player. If you want to open new
market segments, or if you want to become a leader in customer perceived quality, it is helpful to
be able to have many individual products for many customer groups. In times of early
industrialization this has been a contradicting goal to cost effectiveness. With the advent of
computers, individual products at low costs become feasible. You need to combine elementary
standardized building blocks to receive individual products. Companies who manage to provide
individual products have a serious competitive advantage.

Point of Service and Cost Cutting: There are several ways to react to more competition. One way
Is to provide service closer to the customer. Many insurance systems today are still pure back

Copyright © 1998 by Wolfgang Keller page 2
permission is granted to PLoP to make arbitrary copies for conference use

office systems with a lot of paper flowing between several layers of regional offices and the sales
representative. Cost cutting strategies aim at this paper flow and also aim at reducing process
steps. Insurance systems are deployed closer to the customer, calling for Internet and offline PC
architectures and the sales representatives’ laptop becomes closely integrated with the central
transaction system.

Development Cost: The insurance business provides pure immaterial services — no hardware — no
product you can touch. An insurance company that can slash data processing costs is like a
manufacturing company that reduces its labor and material costs. The result is a competitive
advantage. Therefore total relative development costs for insurance systems need to be lowered
while providing more functionality and flexibility at the same time.

Traditional Structure of an Insurance Company versus Product Bundles and Development Costs:
So far we did only talk about the new world of insurance systems. Insurance companies are in
business for quite some time and belong to the early adopters of data processing technology.
Legacy systems and organizations in insurance companies are typically built around product
categories. You will find for example separate life insurance, health insurance or property
insurance systems. This reflects the organization and the distribution of know-how within the
companies. You will typically find a health insurance department, a property insurance
department and so on. The resulting systems tend to having a lot of redundant functionality. For
example the claims processing systems for property insurance and auto insurance have large parts
in common. Health insurance and life insurance share the same insured object: The human body.
Developing systems by product category will result in higher than necessary development costs.
On the other hand it may become very hard to develop systems that work for all product
categories at a time if most domain experts grew up in the old world and have mostly good
knowledge of a few product categories but seldom good knowledge of all product categories.
Often there is also political disturbances between departments who are not interested in
collaborating to construct systems for all product categories at a time.

Copyright © 1998 by Wolfgang Keller page 3
permission is granted to PLoP to make arbitrary copies for conference use

The Patterns

All the patterns to be presented have strong relations and can be grouped into chapters
representing the design field in which you will apply them.

‘ Insurance Value Chain

is part of is part of
‘ Product Server ‘ Policy Administration System
> A
uses is implemented using
‘ Insurance Sales System ‘ ‘ Product Tree ‘ implements
refines ses
‘ Object Event Indemnity ‘ énhances enhances ‘ Policy as Product Instance

Rule System ‘ ‘ Table System ‘

Figure 1: Roadmap of the Pattern Collection

The patterns seen here are a random subset of the set of all patterns that may possibly be mined in
the insurance domain. Nevertheless they are easier to understand if they are grouped into some
fields of design decisions. Therefore we have arranged them in the following chapters:

Top Level Structure of an Insurance System: Deals with the top level subsystems that you will
find in most modern insurance systems. The patterns in this chapter are: Insurance Value Chain,
Product Server and Rule System as a typical subsystem of a Product Server.

Insurance Product Models: Contains a few patterns that are useful if you want to model
insurance products for use in a product server. The patterns presented in this chapter are: Product
Tree and Object Event Indemnity.

Policies: This chapter deals with how to implement insurance policies. The only pattern in this
chapter so far is Policy as Product Instance.

Distributing Insurance Systems: Some subsystems that you will find in a typical insurance
system would not be necessary if we had a virtual supercomputer at the hands of everyone in the
insurance organization with zero time for data access and unlimited wide area network bandwidth
at no cost. Unfortunately such systems are yet to be developed. Until then we will find patterns
that deal with distribution like the Insurance Sales System or a Table System.

Copyright © 1998 by Wolfgang Keller page 4
permission is granted to PLoP to make arbitrary copies for conference use

Top Level Structure of an Insurance System

In this chapter we will present the top level subsystems that you will find in most modern
insurance systems according to the Insurance Value Chain. A very important part of a product
driven insurance system is the so called Product Server. A product server typically has a system
called Rule System that deals with product rules.

Pattern: Insurance Value Chain
Example

You are assigned the task of proposing a structure for a new insurance back office system. What
you find is a bunch of existing systems for each product category like life insurance, property
insurance, auto insurance. You find that there’s a lot of redundant functionality across those
existing systems, especially in claims processing and handling of policies. You also find that
adding new products is a tedious task that is performed at a rate of two new products per year and
product category. This comes from the fact that product knowledge is cluttered across the system
that manages policies and the system part that manages claims processing. Some more product
knowledge can be found in other system parts.

Problem

What is a good domain architecture for the mass of business functionality and business objects
that occurs in an insurance back office system?

Forces

The system should be structured in a way that it is able to support your competitive strategy. We
have already discussed the market forces at work.

Additional forces come from good software design like clear modularity that goes with good
maintainability and management of the complexity of large insurance systems that have a typical
size of far more than 10,000 function points.

Solution

Structure the domain architecture according to the value chain of an insurance. That is Product -
Policies — Claims Processing - Sales & Marketing - Customer Service plus helper systems like a
partner subsystem, a subsystem for insured objects and a subsystem that handles in- and outgoing
payments.

Copyright © 1998 by Wolfgang Keller page 5
permission is granted to PLoP to make arbitrary copies for conference use

Structure

Various Infrastructure
Helper Party Insured Objects Payments ... other ...
Processes Subsystem Subsystem Subsystem Subsystems
Core D Plroduct & Polici Clai Sales & Customer
Processes e\E)e ?_p_rpent S ;'C"tas S balmts Marketing Service
efinition ubsystem ubsystem Subsystem Subsystem
Subsystem

Figure 2: Structure of an Insurance System following the Insurance Value Chain. Adapted to the Insurance

Industry analogous to Porter's Value Chain Models [

The value chain is modeled by the subsystems:

* Product Development & Definition Subsystem: Is responsible for supplying the other system

parts with product definitions that are interpreted by the other parts of the system. Before
these can be used by other subsystems they need to be developed and defined.

Policies Subsystem: Is responsible to store the policies and support all use cases that perform
business actions on them.

Claims Subsystem: Concentrates claims processing for all product categories. Main business
objects are events, claims, involved parties and more.

Sales & marketing Subsystem: Deals with how to sell the products to the customer.

Customer Service Subsystem: Deals with additional services that you might want to offer your
customers besides what you are obliged to support in the claims system anyway.

To properly model all business functionality you need a few helper subsystems like:

Partner (Party) Subsystem: that encapsulates knowledge about all parties the company deals
with.

Insured Objects Subsystem: contains information about insured or damaged objects.

Payments Subsystem: handles in- and outgoing cash flows.

You will typically find a few more subsystems that are not specific to the insurance business like
general bookkeeping, management information systems and data warehouses, human resources
systems and the like. We will not treat these any further as they are no way specific for the

insurance business.

Copyright © 1998 by Wolfgang Keller page 6
permission is granted to PLoP to make arbitrary copies for conference use

Consequences

Using the insurance value chain model does not necessarily imply that you will end up with a
flexible system and short time to market. You need to use a few more patterns like product server
and policy as product instance to lay the ground for product flexibility.

The pattern enables you to build one system for all product categories but mostly you will start
with a few product categories and expand the system in order to migrate from your legacy
systems. Doing this you have the chance to cut development costs by avoiding redundant
functionality.

The structure is a structure for a back office system. Alone it does not affect your presence at the
point of service.

This structure alone also does not imply that you diminish layers of communication and cut costs.
To do this you need to start a business process reengineering effort and use a workflow system.

Implementation

Insurance Value Chain is a domain architecture pattern. To implement a system you need an
application architecture. Most systems in the domain today are built using a Three Layer
Architecture [Rentaz]. A workflow system is also used pretty often. You will typically not be able
to implement the system as a whole at a single site or as a virtual single system. Today's
performance and bandwidth considerations for distributed systems will force you to spilt your
system up into a back office System and an Insurance Sales System.

Variants

You will often find differences in the way the product and the policy subsystems work together.
The product server approach to be discussed, decouples the two while other frameworks like the
UDP framework [loh+98] do not provide a hard subsystem border between the two subsystems but
see policy as product instance and closely couple the two systems.

Related Patterns

Typically, the product subsystem will be implemented as a product server.

A policy subsystem will be implemented using a framework like the User Defined Products
Framework[loh+98], making heavy use of the composite [GOE9s] and type object patterns
[Joh+98b]. You will typically treat a policy as product instance.

Copyright © 1998 by Wolfgang Keller page 7
permission is granted to PLoP to make arbitrary copies for conference use

Known Uses

The above architecture is described in more detail in several domain architectures for the
insurance industry like the Phoenix Architecture [fald+ag], IAA - IBM’s Insurance Application
Architecture or also VAA [{zaass]

Further Reading

Literature on insurance systems is somewhat scarce despite the huge market — but other markets
are even bigger. For the basic ideas behind the value chain based architecture and the analogies to
production of material goods see “Innovative Gestaltung von Versicherungsprodukten” [ﬁb&]
The above known uses are mostly large documents describing very similar domain architectures.
IAA from IBM is also a large domain architecture but is a licensed product that is not accessible
to the public.

Pattern: Product Server
Example

Imagine you want to build a product driven insurance system. Typically you have a back office
system that processes proposals, manages policies and handles claimsf] On the other side you
need the same product definitions for your sales PCs and maybe also for other systems like
internet offerings or systems that support insurance brokers.

Backoffice System Sales System Internet Presentation

Product Definitions

Figure 3: Various Systems need to use identical product definitions

Problem

Where do you define your product knowledge and how do you distribute it?

1 Inthe US claims processing would be outsourced in most cases — in Europe claims processing is mostly done by the
insurance itself

Copyright © 1998 by Wolfgang Keller page 8
permission is granted to PLoP to make arbitrary copies for conference use

Forces

Besides the forces mentioned above there are a few more forces to be taken into account here:

Platform independence: Back office systems typically run on OS/390 machines. Sales PCs
typically run Win95 or other PC operating systems. Internet Clients may run in Java or may run as
ultra thin HTML clients with a server written in some language. Your product definitions must be
accessible on different platforms.

Interface design: Broad interfaces tend to result in bad maintainability and monolithic software
structures. Narrow interfaces are better if you want a subsystem for a large number of clients on
different platforms.

Encapsulation of product knowledge versus optimal user interface design: On the one hand you
want to encapsulate all of your product knowledge. The advantage of this would be that for
example all dialogs only interpret a product definition and are able to automatically adapt
themselves to new product definitions. The downside of this approach is, that “automatic” user
interface are seldom beautiful. The approach might work for back office dialogs. It is very
unlikely it will work for sales dialogs or multimedia product presentations on a sales laptop.

Different Requirements: Even though back office systems as well as sales systems need to use the
same product definitions, their views on the product definitions may slightly differ. For the back
office system that stores all policies you need old as well as actual product definitions. For your
sales system you only need the product program that you actually sell. A product definition
systems knows more products — those that are still being developed and are not in the sale
program yet. You need to provide different views for these systems.

Solution

Encapsulate your product knowledge in a product server. At runtime encapsulate it in a portable
product runtime system and provide views using facades.

Structure
In a typical product server you will find the following components:

» Product Editor: Provides an easy to use interface for the person who defines products. The
product definitions may be persisted in a product model.

» Persistent Product Definitions: are a set of persistent business objects representing your
products. How this is best organized will be discussed in Product Tree and Object Event

Indemnity.

These first two components may be organized in an ordinary object-oriented Three Layer
Avrchitecture.

Copyright © 1998 by Wolfgang Keller page 9
permission is granted to PLoP to make arbitrary copies for conference use

Product Editor

Responsibility of the
Product Server

Backoffice System

apeoe
sooxoeg

- use
Product Runtime System

(Interpreter)

Persistent Generates uses

Product Definitions Binary Representation
for Product Definitions

seles

Sales Laptop

apeoe

needs to be very portable uses

sefes

Internet Presentation

apeoe

Figure 4: Structure of a Product Server

The business object representation of the persistent product definitions will seldom ever be
portable. Therefore we need more components

» Generator: responsible to produce some portable byte code from the persistent product
definitions.

* Product Runtime System: interprets this byte code and is able to run on OS/390 as well as
windows platforms. Some systems use ANSI C for the Product Runtime System to ensure this
portability.

As you want to provide a very narrow interface on your product runtime system and as you may
not want to deal with too primitive operations of such a narrow interface you may implement

» Facades: that provide different views on your product definitions.

Copyright © 1998 by Wolfgang Keller page 10
permission is granted to PLoP to make arbitrary copies for conference use

Sales Laptop The fact that the so called product server contains all of thes
components does not indicate that all of these components wi
Sales Dialog necessarily run on a single machine or that the product server is
server in the sense of a client/server s¥stem.

To get the idea have a look at Figure 5: The configuration for a sale
T s system. The sales dialog uses the product runtime system via
facade. The rest of the so called product server, the product editor,
the product business objects, the generator may run on differel
machines under totally different operating systems and technic
Product Runtime System infrastructures.

(Interpreter)

uses

for Product Definitions

Binary Representation

Figure 5: Sales Laptop

Consequences

An insurance system design using a product server provides product flexibility and platform
independence. Compared to approaches using an active object model only, you can use the same
product definitions with different views to drive your sales system, your internet presentations
and the like.

The downside is the generation process. Systems using a generator have some downsides
compared to systems using active object models and reflection [Bus+96]. On the other hand the
downsides are partly compensated by the fact that you usually do not want your changes to the
product model to be visible everywhere at the same moment you enter them in a product editor.
Insurance Products, like code need to be tested, released and versioned. A system using a single
active object model and no separated spaces for product development, product test and productive
product can easily bring you into trouble.

The other consequences are:
» Platform independence: is achieved by using a portable product runtime system.

» Good Interface design: may be achieved by defining a very narrow interface for the product
runtime system.

» The Optimal User Interface Design: will contain some product know how of it’s own —
containing this tendency is a nontrivial design issue.

» Different Requirements: can be incorporated using different facades on the product runtime
system.

Copyright © 1998 by Wolfgang Keller page 11
permission is granted to PLoP to make arbitrary copies for conference use

Implementation

You can implement the product editor as a conventional object oriented application using an
active object model in a Three Layer Architecture.

Related Patterns

To implement the product editor you should use product trees organized by the object event
indemnity pattern. You will also incorporate a table system and a rule system. The runtime
system can be implemented using pattern for virtual machines [lac+96]. Facades [Gargs] may be
used to provide different views on product definitions.

To implement the product business model for the product editor use active object models and
reflection.

Known Uses

The basic idea to have a product server can be found in many insurance system. Parts of the
approach can be found in VP/MS, a product definition system by CAF || . Two projects by
EA Generali also contain product server ideas: KPS/S an ongoing project for property insurance
and Phoenix, a nearly finished project for life insurance

Pattern: Rule System
Example

Once you have built a product editor that allows you to define product structures you need a
mechanism to derive attributes of tree elements from other attributes for example in order to rate
a policy.

Problem

How do you code the functionality that you need to perform plausibility checks or policy rating
on product trees?

Forces

Usability by application administrators: If you want your application administrators to be able to
define new products without coding, you need to define a scripting language that allows linking
of product attributes, performing computations and doing table lookups. Once you start this, you
easily end up with a complete new programming language. For a deeper discussion see also the
CustomizationViaProgramming]anti pattern on WikiWiki-Web (http://c2.com). This discussion is
a variant of the discussion on Hard coding versus scripting languages: Often it is easier to
hardcode something (especially in Smalltalk) than trying to build a second Smalltalk on top of
Smalltalk.

Copyright © 1998 by Wolfgang Keller page 12
permission is granted to PLoP to make arbitrary copies for conference use

http://c2.com/cgi/wiki?CustomizationViaProgramming
http://c2.com/

Cost: Developing a rule system easily becomes an expensive adventure. It can often be cheaper to
educate a few application administrators in Smalltalk than developing a custom programming
language for them. On the other hand we know examples of an Excel like approach (formula
interpreter) at reasonable cost that is well accepted with application administrators.

Completeness of derivation mechanism: If you build a rule system it should be suited to perform
all attribute derivations you need for product definition. Otherwise you have to program anyway.

Flexibility: For compiled languages like C++ a Excel Sheet like approach is more flexible for
application administrators than an edit/compile/link cycle.

Testing and Debugging Products: If you use a code attribute derivation mechanism in you
product definitions that behaves like a scripting language you will need additional tools like in
any language environment: A custom debugger and

Solution

Build an attribute derivation mechanism similar to semantic functions in a parse tree [faho+86] or
cell calculations in an excel sheet. Have this interpreted at runtime.

Structure

See Figure 6 : Insurance Product as Treel Like in Compiler Building you can program your
semantic functions in a programming language (the Lex/Yacc approach — see M) or you can
also define a closed tool set with a separately invented scripting language.

Note that this does not have too much to do with Rule Based Systems like the one's you find to do
risk assessment e.g. for life insurance. There you often find expert systems (for example
implemented in Prolog). The Rule System we talk about here implements business rule but on a
pretty deterministic and predictable basis.

Consequences

The consequences are as manifold as the implementation variants and depend on how serious you
take the discussion in the forces section. The issues involved are completely analogous to
programming language design. Here are some examples of yogurt that may happen and actually
happened in systems we know:

Incomplete rule definition language: In this case you will end up with coding parts of the attribute
derivations and defining some, resulting in a system that is too expensive compared to the
flexibility and customizability it offers.

Overcomplete rule definition language: Such a language is complex, and might be error prone
and expensive. In this case you may as well use an interpreted programming language instead of a
so called rule system.

Copyright © 1998 by Wolfgang Keller page 13
permission is granted to PLoP to make arbitrary copies for conference use

Related Patterns

Something like the pattern is needed to implement Product Trees. Interpreter[GoE9s] or Virtual
Machine[bac+96] is often used to implement a rule system.

Known Uses

The UDP paper sketches how to implement a rule system in Smalltalk [loh+98]. VP/MS uses a
version that looks more like a spreadsheet [CAEQ7]. Phoenix uses a mixture of hard coded product

logic and rules [fald+og].

Insurance Product Models

This chapter contains a few patterns that are useful if you want to model insurance products for
use in a product server. The patterns presented in this chapter are: Product Tree and Object Event
Indemnity. There are far more ways to model products than just Object Event Indemnity. See
[Ech+as] for a few ideas. Maybe we'll mine a few more in future work.

Pattern: Product Tree
Example

You have followed the insurance value chain approach and decided to build a product server.
Before designing the product server you need an idea, how to model insurance products.

Problem

What is a good representation for insurance products?

Forces

Besides the general forces that drive insurance application design the following should be taken
into account:

User involvement vs. flexibility and generality: You need a product model your users will
understand. On the other hand the industry has seen very flexible approaches based on abstract
data models that are very hard to understandf]

21 you’re in the business you know what | mean and you also know why | dont name it ©

Copyright © 1998 by Wolfgang Keller page 14
permission is granted to PLoP to make arbitrary copies for conference use

Reuse and flexibility: A good approach would allow for reuse at a building block level. What
would be desirable are libraries of product building blocks that can be reused and recombined to
form new products like in the manufacturing industry.

Solution

Model your insurance products as a tree like you would model conventional products like
bicycles.

Structure

Attributes

Insured Person
Golden Life Insurance Total Premium = -},
Payment Modes ",

Annuity Component 1512 R Attributes
o e Insured Person
“**Total Premium = derived
Payment Modes

Risk Component 4713

Avributes
", Insured Person
“Total Premium = derived
Payment Modes

Figure 6 : Insurance Product as Tree

* You model products and their components as nodes of a tree.
* You add attributes to each node describing it.

* You add functionality like the calculation of a premium as derivation rules, analogous to the
semantic functions in a compilers parse tree or you can also write your own rule
system (see also Ralph Johnson’s UDP paper [loh+98]).

Consequences

Product Flexibility: Once you have identified the elementary building blocks of insurance
products, designing and modeling new products becomes much easier and straightforward.

User involvement: Practical work with product servers shows that domain experts with some
additional education are able to model products as trees.

Reuse: Once you have defined your building blocks you can reuse them all over in new and
existing products.

Copyright © 1998 by Wolfgang Keller page 15
permission is granted to PLoP to make arbitrary copies for conference use

Implementation

To seriously implement the scheme you need quite a few more design considerations. Modeling
products as trees does not say anything on how to best structure these trees and on how to best
design product models. See object event indemnity for a few hints.

You will typically implement the tree using composite and the type object pattern to model an
insurance policy as product instance . Combining this with derived attributes leads to the design
of a whole framework as described by Ralph Johnson and Jeff Oakes in their ongoing work

There are two very fundamental variants on how to design the runtime system for product trees

» The first variant assumes that the product editor works on the same database and models as
the active implementation in the productive system. This may lead to an active object model
as described by Ralph Johnson and Jeff Oakes [loh+98]

» The second variant assumes that the development space and the production space are strictly
separated. This is more the product server approach.

Variants

Often building blocks share identical attributes. If you take for example two elementary products:
An annuity component and a risk life insurance you will find an insured person as an attribute
(related object) in both cases. The combination of the two in a product bundle calls for identifying
the two insured person attributes. This may lead to a DAG representation (directed acyclic graph)
instead of a tree representation.

Related Patterns

The pattern is the key to implementing systems according to the insurance value chain. The
pattern you need to implement the scheme have already been discussed in the Implementation
Section above.

Know Uses

The approach is quite common in the insurance industry by now. The approach can be found in
VP/MS, a product definition system by CAF [caEaz]. Two projects by EA Generali also contain
product server ideas: KPS/S an ongoing project for property insurance and Phoenix, a nearly
finished project for life insurance . We know that other insurance companies work on
similar approaches or already use them.

Copyright © 1998 by Wolfgang Keller page 16
permission is granted to PLoP to make arbitrary copies for conference use

Further Reading

The idea to build insurance systems analogous to discrete parts manufacturing systems has been
discussed by Paul Schénsleben and Ruth Leuzinger [lsch+96] but on a relational level.

Ralph Johnson and Jeff Oakes [loh+98] provide a discussion on how to implement such a system
in an object oriented style.

Pattern: Object Event Indemnity
Example

Now that you have decided to model your insurance products as trees you start to define products.
You do it, and your colleagues do it, and after trying to join two models that were built by
different people you notice that the tree paradigm alone does not allow you to arbitrarily
recombine building blocks.

Problem

What is a good way to model insurance products, using a tree structure? What are good
abstractions to model insurance products?

Forces

Quality and understandability: As with many programming languages, the mere paradigm to
implement insurance products as a product tree allows many models that are ill structured, not
good to understand and will later on cause a maintenance headache. Similar observations hold for
many domains with a very high level and abstract modeling paradigm, like object modeling,
entity relationship modeling and the like: You need some rules or domain analysis patterns (see
e.g. [Eawaz]) to narrow the space of possible solutions and some conventions to ease modeling.

Reuse: also calls for some modeling conventions. The more uniform your insurance product
components are modeled, the easier they can be reused in other products.

Solution

Model you insurance products in terms of OEIl: Object — Event — Indemnity. Each insurance
product insures one or more insured objects. If a certain event (e.g. damage) happens to that
object, the client has the right to claim a certain indemnity.

Structure

Your product trees will then look like the following:

Copyright © 1998 by Wolfgang Keller page 17
permission is granted to PLoP to make arbitrary copies for conference use

‘ Sales Product: Golden Life Insurace ‘

4{ Product Component: Risk 13 ‘

Object: Human Body ‘

L{ Event: Death ‘

Indemnity: Fixed Sum ‘

Indemnity: Cost of Burial ‘

4{ Product Component: Annuity 4%
T
|
|

Figure 7: Product Tree Organized using the Object Event Indemnity Pattern

Each term may be used recursively: Objects may contain other objects, Products my contain other
products and so on. But the basic idea behind the structure is pretty stable.

Consequences

Productivity and reuse: If everybody adheres to this or a similar modeling pattern you will have a
common understanding about product structures. You will have higher productivity and better
reuse.

Related Patterns

The pattern refines product tree. But Object Event Indemnity describes only the very top level
part of a product structure. There must be further patterns for the definition of attributes, semantic
rules, use of table lookups and the like that are still waiting to be mined. To mine them you need
access to a set of product models modeled using similar tools by different people or better
different companies. As product models are competition critical knowledge, we will wait quite a
while for such patterns to be published ©.

Further Reading

There are no books or articles yet on the subject. But some product providers like CAF offer
training sessions and some course materials [CAEQ7].

Copyright © 1998 by Wolfgang Keller page 18
permission is granted to PLoP to make arbitrary copies for conference use

Policies

This chapter deals with how to implement insurance policies. The only pattern in this chapter so
far is Policy as Product Instance.

Pattern: Policy as Product Instance
Also known as

Mirrored Parts List

Example

You are proud of having just finished your product editor. You have implemented it using
composite for the model and some hierarchical list box for the GUI. You have also typed your
tree nodes as products, or product components, and object event indemnity plus some more.

Problem

How can you represent an insurance policy?

Forces

General Forces: The strongest forces are the general forces driving insurance application design
(see above). The key word is flexibility. The best product server is near to useless as a
competitive weapon if you cannot handle the new products in your back office system. Therefore
the system that handles policies needs to be as flexible as a product definition tool.

Solution

Make the policies instances of products. Use the type object pattern to do this. The policy then
mirrors the tree structured product definitions.

Copyright © 1998 by Wolfgang Keller page 19
permission is granted to PLoP to make arbitrary copies for conference use

Structure

Policy Factory Policies
Policy Product B
Product A Policy Product A %
‘ ‘ Policy Product B
‘ 1
1 E

‘ I
‘ t:: Policy Product B
Policy Product A %

‘ Policy Product A‘
Product B %
| | =
‘ Policy Product B
_{ ‘ Policy Product A
[| T
Figure 8: Policies as Instances of Products
Some product instances are kept as prototypes in a policy factory[Garas]. The prototypes

are instantiated with real life data to form a policy.

Consequences

Flexibility: Like most reflective systems (see reflection M) you will have a very flexible
system that you can keep in sync with your product definitions.

Portability: You have to take special precautions to keep your system portable. If you use the
pattern to implement an active object model on a host computer you might have a hard time
implementing the same thing on your sales persons’ laptop computers and vice versa.

Performance: As with most reflective systems performance may become poor if you do not keep
an eye on it constantly. If you have for example a product tree with a depth of 6 and a naive
database mapping you need to retrieve let’s say around 100 database records (using joins) until
you can work on the policy that mirrors the product tree. To prevent this you need to come up

with a clever database mapping [Kel97].

Copyright © 1998 by Wolfgang Keller page 20
permission is granted to PLoP to make arbitrary copies for conference use

Variants

In practice you can find two main variants of the pattern.

Single database system: In case you implement your product definition system and policy
component in one single database you can use the product editor to produce new prototypes in the

policy factory. The policy factory in this case is also the data pool for the product definition
system.

Product Definition Dialog Policy Administration Dialog

Policy Factpry Policies

ProductA | | | | __ oy A

| - »
Product B E ‘ I]
| bt::

Single Database

Figure 9: Single Database Product Definition and Policy Administration System

The downsides of this approach are:

* You closely couple spaces for product development and the actual productive products. The
advantage is that each product becomes available in the production system the very moment
you define it (which is actually a downside as you have to test it and release it).

* In most cases you have no way to use the product definitions single source on a sales laptop.

Copyright © 1998 by Wolfgang Keller page 21
permission is granted to PLoP to make arbitrary copies for conference use

» If you persist the resulting business objects in a naive way you’ll be in big performance
trouble.

Decoupled approach: A product server for the central policy administration system and the
insurance sales systems: You use the product server approach (see and make the Policy
Factory (see Figure 9) a client of the Product Runtime System and remove the product definition

dialog from

» The downsides of this approach: are it is more stuff to implement, less straightforward and
comprises some of redundancy.

* The advantages: are the product definition system is decoupled from policy administration.
You have more possibilities to tune performance. You can also have other clients, for
example insurance sales systems.

Related Patterns

The pattern is a recursive use of composite and type object in a specific context. Another term for
this special kind of system is active object model which is a variant of reflection.

The first time you use type object is when you assign types to your tree components [loh+ag] in
the product definition system. The second time you use type object is when you take a complex
tree instance (a product tree instance) as the (proto)type for an insurance policy (see Figure 8).

You use composite to build your product trees as well as to build your policy trees. A concrete
policy tree is a type of a product tree.

Known Uses

PVS, a system by Generali Munich uses the single database approach on a host system. The
UDP[lon+98] does not state explicitly which variant it uses but it looks a lot like the single
database variant. The Phoenix Project [fald+98] at Generali also uses a single database variant.

We have not yet seen the decoupled approach — but will most likely implement it in one of our
next projects.

Further Reading

If it comes to the discussion of detailed object oriented design considerations on how to build the
product tree, we’ll leave the field to Ralph Johnson and Jeff Oakes for the moment, who provide
a pattern based in depth design discussion of the subject [loh+98]. This paper also contains a
deeper discussion of how to use interpreter to calculate derived attributes.

Copyright © 1998 by Wolfgang Keller page 22
permission is granted to PLoP to make arbitrary copies for conference use

Distributing Insurance Systems

Some subsystems that you will find in a typical insurance system would not be necessary if we
had a virtual supercomputer at the hands of everyone in the insurance organization with zero time
for data access and unlimited wide area network bandwidth at no cost. Unfortunately such
systems are yet to be developed. Until then we will find patterns that deal with distribution like
the Insurance Sales System or a Table System.

Pattern: Insurance Sales System
Example

Now that you have a flexible back office system you want a laptop front office system for your
sales representatives that helps you sell the products you have defined using your product server.

Problem

How do you structure the sales system on the laptops of your sales representatives?

Forces

Besides the general forces above you can observe a few more specific forces here:

System Distribution: The ideal insurance system would be a distributed virtual mainframe with a
GUI that provides your sales force with all the available information about your company at a
fingertip. This is prohibitively expensive yet as we have differences in performance between
memory access, and file or database 1/0, and networked 1/O. There is no thing such as free
unlimited bandwidth yet.

Low cost versus individual market appearance: Today you can buy low cost me too systems that
sell standard financial products at low prices. But that’s not what you want. You want an
individual market appearance, you want non standard products, you want these quick. The section
on general forces above has discussed this in more detail.

Flexibility: Short product innovation cycles call for a very flexible system.

Reuse and Single Source: To keep costs contained and to avoid sources of problems like
redundancy you want to use a single code base and maximum reuse for both your front office and
back office systems.

Innovative Aspects: You will not attract your customer by making “me too” offers. You need a
place to plug in innovative parts into your application.

Copyright © 1998 by Wolfgang Keller page 23
permission is granted to PLoP to make arbitrary copies for conference use

Solution

First of all put those things on the laptop that you need to sell your products or provide service.
The more you can afford the better. Then divide the functionality into a common shell that’s not
specific to any insurance company, a partner (party) subsystem, a sales record, a contact
subsystem, and the core sales part that converts proposals into policies. Add a multimedia sales
part at your liking. Link the system via an offline connection to your central processing unit in
order to process proposals and exchange customer data.

Structure

Dialog Drivers

Common Subsystems Individual Subsystems

z 8
» ° 3| @ %
5 5 2 § DE_ ES o

5

E é 9 o — c g
/o] S S 0 o < =
(@] o (@] Q9 ~ o >
[+) @ o
n Q@ o =
IS £

n

Business Object, Persistence and Data Replication Services

Figure 10: Structure of an Insurance Sales System Application

The components of your system have the following responsibilities:

» Common Shell: Provides all the technical infrastructure that you need for a PC based object-
oriented solution like the MVC frameworks, persistence frameworks, data replication plus a
generic application driver that allows plugging in new applications easily.

» Partner Subsystem: Allows your sales representative to collect information about her
customers, their financial circumstances, their hobbies and the like. All the facts that
smoothen sales and allow selection of target groups for sales action. A partner subsystem for a
sales person typically offers much more functionality than a back office partner subsystem.

» Sales Record: Allows you to keep track of the products your partner has already bought from
you or other vendors. The extent of individuality that you need also depends on Quality of the
Gap Analysis Component that you want to provide.

Copyright © 1998 by Wolfgang Keller page 24
permission is granted to PLoP to make arbitrary copies for conference use

» Contact Subsystem: Is a component that allows you to keep track of your appointments, to do
route planning and the like.

» Sales: Offers dialogs that allow you to formulate and calculate proposals together with your
customer. These dialogs are product oriented, typically using your product server.

» Gap Analysis: Is a typical individual part that gathers data about your customer and compares
the financial products she has with her total need of financial products resulting in a list of
products she might buy from you.

* Innovative Parts: Anything that helps you sell your products like additional multimedia
product information, benefits analysis and the like.

Example Resolved

Having heard about the shell approach, you contact a vendor and start a project that fills the shell
with your products and innovative sales ideas.

Consequences

Performance over the network: With an offline system you are on the safe side if it comes to
performance but on the poor side if it comes to access to all enterprise data. What you need to sell
your products is not what you want as the maximum functionality you might imagine at the POS
(point of service, not only sales).

Functionality: The pattern describes the kind of systems that you see today at the point of service.
The pattern does not describe the systems that we will see in the near future - we will see far more
functions moved to the POS. So sorry, but this is a patter and not a look into the future.

Low cost versus individual market appearance: The pattern allows for an individual market
appearance (products and innovative parts) at comparably low costs. The pattern also leaves
enough space for Innovative Aspects by seeing these as “plug ins”.

Flexibility: Short product innovation cycles are supported by a product server approach in the
sales per product part.

Reuse and Single Source: Reuse can be achieved by a series of measures: First by using the
pattern as you will not write a separate partner or contact application. Second by using the
product server approach. Another idea to promote reuse is at the widget level by using component
concepts or at the business object level also by using component concepts.

Related Patterns

An Insurance Sales System often uses a product server runtime component, and uses a table
system and a rule system.

Copyright © 1998 by Wolfgang Keller page 25
permission is granted to PLoP to make arbitrary copies for conference use

Known Uses

There are several examples of customizable products that support this pattern’s approach. For

example the FINAS system by NSE (www.nse.de), the SILVA system by CAF (www.caf.de).
Some individual products like KUBIS by EA-Generali or AdiPlus by Interunfall are similar.

Pattern: Table System
Example

Insurance systems (especially those that deal with products) need many tables, to provide valid
values for keys, to provide mappings from e.g. regions to data relevant for rating auto insurance
policies.

Problem

How do you provide flexible but yet performing access to data that need to be accessed mostly
read only, can be organized in table form and need to be updated from time to time by domain
experts?

Forces

Performance versus redundant functionality: You implement a redundant system if you
implement a second database system with better performance than a relational database system
but with less functionality. On the other hand, a second local read only database is so much faster
that the price you pay in terms of maintainability is worth the price of a duplicate component.

Costs and effort of data distribution: In a central database you have no data replication problems.
If you have a second database using flat files at passivation time and main storage at the time your
application is up you get a replication problem. Therefore you have a tradeoff between data
distribution and data access performance.

Testing and delivery of new products: Definition data behave like code. Table data in an
insurance application are definition data and therefore have to be treated like code: They need
versioning, testing and release procedures. If you want to provide this functionality in a central
database system you have to invent some additional procedures anyway.

Need for historical data: Insurance systems rely heavily on historical data. For reasons of internal
audit procedures you need to be able to reproduce any old state of a policy. To make things
worse, policies may be changed and you need to be able to reproduce the actual and historic states
of any relevant insurance contract at any time. This leads to so called two dimensional histories
[lzaa97] Eowazl page 305]. There are virtually no database systems that natively support such
functionality.

Copyright © 1998 by Wolfgang Keller page 26
permission is granted to PLoP to make arbitrary copies for conference use

http://www.nse.de/
http://www.caf.de/

Solution

Use a table system which provides Tables as the only abstraction. These tables reside in main
memory at runtime.

Structure

To a client a table system provides a set of tables as the central abstraction.

Table Titles -

key: InternalRep | key: ExternalRep

1 Dr.

2 PhD.
3 MD.
4 M.S

Figure 11: Table containing the valid set of titles for an insurance application

For a table system you need some infrastructure

Copyright © 1998 by Wolfgang Keller page 27
permission is granted to PLoP to make arbitrary copies for conference use

Application Administrators Workspace Application Users' Workspace

Table Editor A_ppllcanon
using Tables
edit tables ? use tables

Table Runtime

Table Titles Table Titles

key: InternalRep | key: ExtemalRep key: InternalRep | key: ExternalRep
1 D Dr.

2 PhD. PhD.

3 MD. MD.

4 ms M.S.

o Joo o |-

load tables into memory

Table Titles

distribute tables

key: InternalRep | key

PhD.
MD.
mS.

NI .

some File System
Representation

» Atable editor allows your application administrators to enter valid data for tables.

» The tables then need to be distributed to all client sites. They will typically reside in one or
more flat files or some other file system representation.

* When the client system starts up it might load all the tables into memory. If the client system
does not have enough memory to do that it may also use a caching algorithm to read tables by
need and swap out unused tables.

Consequences

Performance: Accessing a table system is several orders of magnitude faster than a database
access (nanoseconds instead of milliseconds).

Redundancy and cost: The downside is that you install a second stripped database in your main

memory and that you have to develop the procedures for data distribution, data testing and data
editing. A table system is not cheap.

Variants

On the market you will find table system with and without the ability to treat historical data.

Copyright © 1998 by Wolfgang Keller page 28
permission is granted to PLoP to make arbitrary copies for conference use

Related Patterns

For patterns of historical data see Fowlers Analysis Patterns: Historic Mapping and Two
Dimensional History. To really implement a system the level of detail provided is not sufficient.
Our own Phoenix Framework contains an implementation, but ONE design is not a
pattern and we do know only one other implementation [lantas] which is very different.

Known Uses

Tabex/2B] is a product common for host and client systems in the European insurance market.
VP/MS [contains a table system as a component of the product server (but without
historical data). Both systems are used in many insurance systems. VAA contains an own
specification for a table system to be used in the insurance business ||

Frequently Used Patterns and Strategies

The following is an account of patterns that have been frequently referenced in this paper.

Active Object Model

You can adapt an Active Object Model [[ohgs] without programming. Other terms that are used
for the same thing are meta system or reflection [Bus+96].

Business Process
Reengineering

You will often combine a new implementation of an insurance system with a business process
reengineering effort. For a discussion of BRR in pattern form see [Bee97].

Composite

Whenever you want to model a product tree, this calls for the use of the composite pattern

[BoFas].

Interpreter

To implement a rule system, you will create you own little programming language, mostly using
the interpreter pattern [GOFs].

3 by BOI Software, Linz

Copyright © 1998 by Wolfgang Keller page 29
permission is granted to PLoP to make arbitrary copies for conference use

Reflection

The reflection pattern [Bus+96] describes meta systems in pattern form. You need to use it to
implement product flexibility, using Active Object Models [lohos]

Type Object

The type object pattern may be used to connect policies and products by making policies
instances of products. The recursive structure of product trees is mostly implemented using

composite.

Virtual Machine

If you build a product server, you somehow need to interpret your product definitions. You may
use a virtual machine to decouple product definition (programming) from running products
(product instances are policies).

Whole Part

The composite pattern is a variant of the whole part[Bus+96] pattern. Therefore you use whole
part, whenever you use composite to model product trees.

Acknowledgments

I'd like to express thanks to my PLoP shepherd Richard Helm for many useful hints and
comments.

References

[Aho+86] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers: Principles, Techniques, and Tools,
Addison-Wesley 1986.

[And+97] David M. Anderson, B. Joseph Pine: Agile Product Development for Mass Customization: How
to Develop and Deliver Products for Mass Customization, Niche Markets, JIT, Build-to-Order, and
Flexible Manufacturing; McGraw-Hill, 1997.

[Ald+98] Robert Aldrup, Jérg Baumann, Christian Weitzel: Die Phoenix Facharchitektur, agens & EA
Generali AG, 1995-1998. http://www.agens.com/} Look for Phoenix.

[Beed7] Michael A. Beedle: cOOherentBPR- A pattern language to build agile organizations, Proceedings
PloP 97, http://st-www.cs.uiuc.edu/users/hanmer/PL oP-97/Workshops.html|

[Bus+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern
Oriented Software Architecture - A System of Patterns, Wiley 1996.

[CAF97] CAF GmbH: VP/MS, Versicherungsprodukt-Modellierungssystem, CAF GmbH, Gilching 1996,
1997, 1998. http://www.caf.de/]

[Fow97] Martin Fowler: Analysis Patterns; Addison Wesley Longman, 1997.

Copyright © 1998 by Wolfgang Keller page 30

permission is granted to PLoP to make arbitrary copies for conference use

http://www.agens.com/
http://st-www.cs.uiuc.edu/users/hanmer/PLoP-97/Workshops.html
http://www.caf.de/

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Elements of
Reusable Object-oriented Software, Addison-Wesley 1995.

[Jac+96] Eydun Eli Jacobsen, Palle Nowak: A Pattern Language for Building Virtual Machines,
Procedding EuroPLoP 1996; http://www.cs.wustl.edu/~schmidt/europlop-96/ww1-papers.html|

[Joh98a] Ralph Johnson: ActiveObjectModel; Wiki Wiki Web; http://c2.com/wiki?ActiveObjectModel

[Joh98hb] Ralph Johnson: Personal Communication, 1998

[Joh+98a] Ralph Johnson, Jeff Oakes: The User-Defined Product Framework; Work in progress, available
via the author Johnson@cs.uiuc.edu,

[Joh+98b] Ralph Johnson, Bobby Woolf: Type Object, in Robert Martin, Dirk Riehle, Frank Buschmann
(Eds.): Pattern Languages of Program Design 3. Addison-Wesley 1998.

[Kel97] Wolfgang Keller: Mapping Objects to Tables: A Pattern Language, in ,,Proceedings of the 1997
European Pattern Languages of Programming Conference, Irrsee, Germany, Siemens Technical
Report 120/SW1/FB 1997.

[Pho98] Jorg Kroger, Wolfgang Keller: Phoenix Business Model Framework, User’s Guide, Internal
Technical Document, EA-Generali AG 1998.

[Por85] Michael E. Porter: Competitive Advantage; The Free Press 1985.

[Ren+97] Klaus Renzel, Wolfgang Keller: Three Layer Architecture in Manfred Broy, Ernst Denert,
Klaus Renzel, Monika Schmidt (Eds.) Software Architectures and Design Patterns in Business
Applications, Technical Report TUM-19746, Technische Universitat Minchen, 1997.

[Sch+96] Paul Schonsleben, Ruth Leuzinger: Innovative Gestaltung von Versicherungsprodukten.;
Flexible Industriekonzepte in der Assekuranz, Gabler, 1996

[VAA95] GDV: VAA - Die Versicherungs-Anwendungs-Architektur, 1. Auflage, GDV, Bonn 1995.

[VAA9T] GDV: VAA - Die Versicherungs-Anwendungs-Architektur, 2., uberarbeitete Auflage, GDV, Bonn
1997.

Copyright © 1998 by Wolfgang Keller page 31

permission is granted to PLoP to make arbitrary copies for conference use

http://www.cs.wustl.edu/~schmidt/europlop-96/ww1-papers.html
mailto:johnson@cs.uiuc.edu

Table of Contents

Abstract 1]
Introduction 1]
lAnalogies in Other Industries 1]
Existing Reference Models for the Insurance Industry 2]
General Forces Driving Insurance Application Design 2|
[The Patterns 4]
[Top Level Structure of an Insurance System 5
Pattern: Insurance Value Chain 5]
Pattern: Product Server 8|
Pattern: Rule System 12|
[Insurance Product Models 14|
Pattern: Product Tree 14
Pattern: Object Event Indemnity 17|
Policies 19|
Pattern: Policy as Product Instance 19|
Distributing Insurance Systems 23|
Pattern: Insurance Sales System 23|
Pattern: Table System 26|
Frequently Used Patterns and Strategies 29|
References 30
[Table of Contents 32|
Copyright © 1998 by Wolfgang Keller page 32

permission is granted to PLoP to make arbitrary copies for conference use

	Abstract
	Introduction
	Analogies in Other Industries
	Existing Reference Models for the Insurance Industry
	General Forces Driving Insurance Application Design

	The Patterns
	Top Level Structure of an Insurance System
	Pattern: Insurance Value Chain
	Example
	Problem
	Forces
	Solution
	Structure
	Consequences
	Implementation
	Variants
	Related Patterns
	Known Uses
	Further Reading

	Pattern: Product Server
	Example
	Problem
	Forces
	Solution
	Structure
	Consequences
	Implementation
	Related Patterns
	Known Uses

	Pattern: Rule System
	Example
	Problem
	Forces
	Solution
	Structure
	Consequences
	Related Patterns
	Known Uses

	Insurance Product Models
	Pattern: Product Tree
	Example
	Problem
	Forces
	Solution
	Structure
	Consequences
	Implementation
	Variants
	Related Patterns
	Know Uses
	Further Reading

	Pattern: Object Event Indemnity
	Example
	Problem
	Forces
	Solution
	Structure
	Consequences
	Related Patterns
	Further Reading

	Policies
	Pattern: Policy as Product Instance
	Also known as
	Example
	Problem
	Forces
	Solution
	Structure
	Consequences
	Variants
	Related Patterns
	Known Uses
	Further Reading

	Distributing Insurance Systems
	Pattern: Insurance Sales System
	Example
	Problem
	Forces
	Solution
	Structure
	Example Resolved
	Consequences
	Related Patterns
	Known Uses

	Pattern: Table System
	Example
	Problem
	Forces
	Solution
	Structure
	Consequences
	Variants
	Related Patterns
	Known Uses

	Frequently Used Patterns and Strategies
	
	
	Active Object Model
	Business Process Reengineering
	Composite
	Interpreter
	Reflection
	Type Object
	Virtual Machine
	Whole Part

	Acknowledgments
	References
	Table of Contents

