
1 17/03/01 W . Keller

Flexible Insurance Systems

Part 4: Reflective Policy Systems

2 17/03/01 W . Keller

Agenda

• Now that I have a Product Definition,
How do I implement a policy?

• The Reflection Pattern aka. Meta System
• Example: Flexible “Insured Objects”
• Is everything “meta”?

• Partners are not, general ledger is not ,….

• How to provide generic funtionality
• How to control Performance?

• Don’t make it too deep, Beispiele der Vertragsstruktur VIAS und PVS

3 17/03/01 W . Keller

How do I implement a policy?
Policies refer to Products

Product
AllFa7

Policy
4711

Policy
4714

Policy
6213

4 17/03/01 W . Keller

H
ow

 d
o

I i
m

pl
em

en
t a

 p
ol

ic
y?

Po
lic

ie
s

m
irr

or
 P

ro
du

ct
s

Policy „Car Insurance 2000“

Product Bundle
Car Liability

Elementary Product
Car Property Damage

Elementary Product
Minimum Car Liabilty

Elementary Product
Premium Car Liability

Insured Object
License = „M-H 1842“
Type = „VW-Golf“
Power = 45 KW

5 17/03/01 W . Keller

How do I implement a policy?
Policies mirror Products

Insured Object Definition
Attribute License of type Text(10)
Attribute Type of type Text(20)
Attribute Power of type Num(4)
.....

Insured Object
License = „M-H 1842“
Type = „VW-Golf“
Power = 45
...

Product Definition

Policy Instance ..

6 17/03/01 W . Keller

The Reflection Pattern aka. Meta System
Running Example: Insured Object

Meta-Meta
Model

Operational
Data

Policy-System
Claim

Meta-Model

Product

7 17/03/01 W . Keller

Meta Meta Model

mmTreeElem

mmLeaf mmNode

mmInsObject

8 17/03/01 W . Keller

Meta Level = Product DefinitionMeta Meta Level

Meta Model
aka Product Definition

pCaris instance if
mmInsObject

pLicenseis instance if
mmAttribute

9 17/03/01 W . Keller

Operational Data
aka Policy

Meta Level = Product Definition Policy

pCar
45Cd5E

is instance if
pCar

PLicense
„M-H 1842“

is instance if
PLicense

10 17/03/01 W . Keller

How can I implement this in a RelDB
Example: Flexible “Insured Objects”

Problem
• I do not want to add a new table for a new type of Insured

Objects each time I add a new type of Insured Object (e.g. a
Satellite) to the product definition.

Solution
• Use a generic table scheme like ...

11 17/03/01 W . Keller

Example: Flexible “Insured Objects”
Generic Table Scheme

tObjectID tAttribute tValue

43B56C License M-H 1842

tObjectID tObjectType

pCar

pBicycle

...

43B57E Value 800,4243B56C

43B57E

43B56C Type VW Golf

43B56C Power 45

43B56D

Concrete Insured Objects
Types of

Insured Objects

12 17/03/01 W . Keller

You can do the same for ...

• Coverages
• Or Call them Events and Indemnities

• Elementary Products
• Sellable Products
•

13 17/03/01 W . Keller

Is everything “meta”?
Design here is balancing performance versus
flexibility ...

Normal Object - no changes
 without programming

Flexible Object
Performance Penalty

Where do I put my objects???

Insured
Object

Coverage
Product

Business
Partner

Account

14 17/03/01 W . Keller

Is everything “meta”?
Tree depth and performance

depthBetter
performance

Slower
System

15 17/03/01 W . Keller

How to provide generic funtionality
Something that does not work

AllFa7

Household

Accident

Liability

Luggage

calculatePremium

calculatePremium

calcPremium

$calcPremium

calculatePremium

16 17/03/01 W . Keller

How to provide generic funtionality
Something that does work

• In order to make product
definitions work together
with a policy system the
model needs to follow a set
of conventions that are
mastered by the policy
system

• In Object-Orientation this is
often referred to as
„protocol inheritance“

Protocol
Class

CalcPremium

Concrete
Class

CalcPremium

17 17/03/01 W . Keller

How to provide generic funtionality
Something that does work

• Restrict tree structures to a
defined set of patterns

• Like VP/MS style
• Like PDFS style
• Like VIAS style
• Or a collection of styles

• But NOT any style

Elementary Product: „Hausratversicherung“

Insured Object „Wohnung“

Coverage „ Komportdeckung“

Coverage „ Basisdeckung“

18 17/03/01 W . Keller

Literature and Related Stuff

• See the Reflection Pattern
• Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern Oriented

Software Architecture - A System of Patterns, Wiley 1996.

• See the Type Object Pattern
• Ralph Johnson, Bobby Woolf: Type Object, in Robert Martin, Dirk Riehle, Frank Buschmann (Eds.):

Pattern Languages of Program Design 3. Addison-Wesley 1998.

• See the Open Implementation Homepage
• Gregor Kiczales et al.: Open Implementation Design Guidelines; see http://www.parc.xerox.com/oi/

• See „Some Patterns for Insurance Systems“
• Wolfgang Keller; see http://www.objectarchitects.de/ObjectArchitects/papers/ or the STJA 1998

Proceedings

