
© 2004 Wolfgang W. Keller - all rights reserved 0

Persistence Options for
Object-Oriented Programs

OOP 2004
Wolfgang Keller, wk@objectarchitects.de

Wednesday, January 21st 2004. (15:30h - 17:00h)

© 2004 Wolfgang W. Keller - all rights reserved 1

Your Charter of Rights
If you invest the next 90 Minutes

• you have the right to know WHAT you are told
and HOW YOU PROFIT from it

• you have the right to know WHO you spend 90 minutes with
• and you have the right to know HOW this is done and

WHERE you are at each moment

© 2004 Wolfgang W. Keller - all rights reserved 2

WHAT
The 4 Key Messages
for „normal“ developers and architects

• know you application style before you decide for a certain
way to implement persistence

• know the concept of transparent persistence
• don‘t develop your own green-field persistence layer unless

you do it for fun. That made sense 10 years ago but in the
presence of plenty of commercial and open source software
for the area it is nowadays too expensive in most cases

• In case you run into problems, know where to find the
patterns and explanations on the mechanics of persistence

© 2004 Wolfgang W. Keller - all rights reserved 3

WHAT this talk is NOT

• this talk is not a comparison for the special option how to
provide persistence in J2EE environments, like

• EJB persistence (CMP and BMP),
• JDO,
• and Hibernate

• discussions like that sometimes become a but „inflamed“ –
hence I avoid them ☺

© 2004 Wolfgang W. Keller - all rights reserved 4

HOW YOU PROFIT

• you might be prevented from making a few expensive
mistakes, like

• using a persistence mechanism that doesn‘t perform or doesn‘t fit
the problem

• getting project delay because of writing your own instead of using
some product

• and you know where you find more information if you need
help with persistence issues

© 2004 Wolfgang W. Keller - all rights reserved 5

WHO

• a guy who has written persistence stuff for a
bank in 1994-95, when the field was young and
products were scarce.

• who has mined the field for patters, first in a
research project in 1996 and later just for fun

• and who is now observing the field more or less
as a technical hobby. See
http://www.objectarchitects.de/

• no Generali Group Logo today on these slides as
this has not got much to do with my daily job as a
tech manager at

© 2004 Wolfgang W. Keller - all rights reserved 6

HOW
Overview

• what is persistence anyway?
• persistence defined
• the concept of transparent persistence
• persistence interfaces

• application styles
• when to use o/r mapping and when to use other options

• o/r mappers explained (how to …) from the primitive to the complex
• the basics of mapping
• the basics of implementing o/r mapper features

– oid, inheritance, relations, transactions,
• persistence in EJBs
• a few remarks on the state-of-the-art in .NET
• summary

© 2004 Wolfgang W. Keller - all rights reserved 7

What is Persistence anyway?
Persistence defined

• persistence is the ability of an object to survive the lifecycle
of the process in which it resides

• objects that „die“ with the end of a process are called
transient

time

Process1 Process2

student(„Hugo“,“A“) student(„Hugo“,“A“)

storeAll loadAll

© 2004 Wolfgang W. Keller - all rights reserved 8

What are the Options to Implement
Persistence?

Database

?

X Y

Z

Object
Database

Object/
Relational
Coupling

Stream
Persistence

Object
Server

Page
Server ORDBMS

O/R
Access
Layer

© 2004 Wolfgang W. Keller - all rights reserved 9

Generations of Database Technology (1)
How Databases evolved

• flat files
• no efficient key based access

• ISAM/VSAM files
• efficient access via a key but no

concurrency, recovery, logging ...
• hierarchical DBMS (IMS-DB)

• very efficient as long a access paths are used as planned. Still
fastest existing „real“ databases

• network model
• CODASYL and the like: multiple access paths but also problem as

soon as you leave the pre-designed access paths

© 2004 Wolfgang W. Keller - all rights reserved 10

Generations of Database Technology (2)
How Databases evolved

• relational DBMS
• very flexible in terms of access - but watch out for performance
• avoid for graphs, trees, ...

• OODBMS
• very good performance for pointer based navigation
• weaknesses in query processing and also data manipulation

languages
• low market share

• Object/Relational Addendums
• offered by big DB vendors on top of RDBMS
• but no broad production experiences

© 2004 Wolfgang W. Keller - all rights reserved 11

What is Persistence anyway?
The Concept of Transparent Persistence

• a persistence mechanism is called „transparent“ or also
„orthogonal“ if persistent objects are treated no other in the
programming environment than transient (non-persistent)
objects

© 2004 Wolfgang W. Keller - all rights reserved 12

Little Q&A session

Q: Is an object-oriented language with a persistence mechanism (be it
transparent or non-transparent) automatically an object database?

A: No - there‘s a set of features that distinguishes a „database“ from an
arbitrary file system or „low profile“ persistence mechanism. The
features are:

• Concurrency (Locking, Units of Work (Transactions))
• Recovery, Logging
• Security
• Query Facilities
• Secondary Storage Management

© 2004 Wolfgang W. Keller - all rights reserved 13

Little Q&A session

Q: What distinguishes making objects persistent from straight use of a
relational database?

A: o-o languages have a rich set of features not present in relational
databases or flat files, like:

• Complex objects
• Object identity
• Encapsulation
• Types and Classes
• Class or Type Hierarchies
• Overriding, overloading and late binding

Database

?

X Y

Z

© 2004 Wolfgang W. Keller - all rights reserved 14

The ODMG Standard and Interface
What‘s that?

• ODMG = Object Data Management Group
(www.odmg.org)

• has published a standard for object databases
in three editions

• last edition from 2001
• the came JDO

• ISBN 1-55860-647-5
• the standard is often used as a persistence

extension to O-O languages.
• there are „language bindings“ for Java, C++,

Smalltalk, ...
• JDO is a follow up standard – only Java =>

no language bindings

© 2004 Wolfgang W. Keller - all rights reserved 15

The ODMG standard and interface
Code is better than long explanations :-)
public void apply()

{
String in = readLineWithMessage("Edit Product with id:");
int id = Integer.parseInt(in);

// We don't have a reference to the selected Product.
// So first we have to lookup the object.

// 1. build oql query to select product by id:
String oqlQuery = "select del from " +

Product.class.getName() +
" where _id = " + id;

Database db = odmg.getDatabase(null); // the current DB
Transaction tx = null;
try
{

// 2. start transaction
tx = odmg.newTransaction();
tx.begin();

// 3. lookup the product specified by query
OQLQuery query = odmg.newOQLQuery();
query.create(oqlQuery);
DList result = (DList) query.execute();
Product toBeEdited = (Product) result.get(0);

// 4. lock the product for write access
tx.lock(toBeEdited, Transaction.WRITE);

Source from: OJB ODMG API Tutorial
see http://db.apache.org/ojb/tutorial2.html

Source from: OJB ODMG API Tutorial
see http://db.apache.org/ojb/tutorial2.html

© 2004 Wolfgang W. Keller - all rights reserved 16

The ODMG standard and interface
Code is better than long explanations :-)

// 5. Edit the product entry
System.out.println("please edit existing product");
in = readLineWithMessage(

"enter name (was " + toBeEdited.getName() + "):");
toBeEdited.setName(in);
in = readLineWithMessage(

"enter price (was " + toBeEdited.getPrice() + "):");
toBeEdited.setPrice(Double.parseDouble(in));
in = readLineWithMessage(

"enter available stock (was "+toBeEdited.getStock() + "):");
toBeEdited.setStock(Integer.parseInt(in));

// 6. commit transaction
tx.commit();

}
catch (Throwable t)
{

// rollback in case of errors
tx.abort();
t.printStackTrace();

}
}

Source from: OJB ODMG API Tutorial
see http://db.apache.org/ojb/tutorial2.html

Source from: OJB ODMG API Tutorial
see http://db.apache.org/ojb/tutorial2.html

This is transparent enough but not really

what was envisioned when transparent

persistence was defined and „invented“

This is transparent enough but not really

what was envisioned when transparent

persistence was defined and „invented“

© 2004 Wolfgang W. Keller - all rights reserved 17

The Object-Oriented Database System
Manifesto – Mandatory Features (1)

• Complex objects
• Object identity
• Encapsulation
• Types and Classes
• Class or Type Hierarchies
• Overriding, overloading and late binding
• Computational completeness

feature list compiled from: [Atk+89] Malcolm P. Atkinson, François Bancilhon, David J.
DeWitt, Klaus R. Dittrich, David Maier, Stanley B. Zdonik: The Object-Oriented
Database System Manifesto. in "Deductive and Object-Oriented Databases",
Proceedings of the First International Conference on Deductive and Object-Oriented
Databases (DOOD'89), pp. 223-240

feature list compiled from: [Atk+89] Malcolm P. Atkinson, François Bancilhon, David J.
DeWitt, Klaus R. Dittrich, David Maier, Stanley B. Zdonik: The Object-Oriented
Database System Manifesto. in "Deductive and Object-Oriented Databases",
Proceedings of the First International Conference on Deductive and Object-Oriented
Databases (DOOD'89), pp. 223-240

We have seen this list a

few slides ago

We have seen this list a

few slides ago

fast ...

© 2004 Wolfgang W. Keller - all rights reserved 18

The Object-Oriented Database System
Manifesto – Mandatory Features (2)

• Extensibility (of the Type System)
• Persistence
• Secondary storage management
• Concurrency
• Recovery
• Ad Hoc Query Facility

feature list compiled from: [Atk+89] Malcolm P. Atkinson, François Bancilhon, David J.
DeWitt, Klaus R. Dittrich, David Maier, Stanley B. Zdonik: The Object-Oriented
Database System Manifesto. in "Deductive and Object-Oriented Databases",
Proceedings of the First International Conference on Deductive and Object-Oriented
Databases (DOOD'89), pp. 223-240

feature list compiled from: [Atk+89] Malcolm P. Atkinson, François Bancilhon, David J.
DeWitt, Klaus R. Dittrich, David Maier, Stanley B. Zdonik: The Object-Oriented
Database System Manifesto. in "Deductive and Object-Oriented Databases",
Proceedings of the First International Conference on Deductive and Object-Oriented
Databases (DOOD'89), pp. 223-240

We have seen a similar

list as the „database

distinctive features“

We have seen a similar

list as the „database

distinctive features“

© 2004 Wolfgang W. Keller - all rights reserved 19

The Object-Oriented Database System
Manifesto – Goodies

• Multiple inheritance
• Type checking and type inferencing
• Distribution
• Design transactions (Nested, Parallel)
• Versions (Schema Evolution)

feature list compiled from: [Atk+89] Malcolm P. Atkinson, François Bancilhon, David J.
DeWitt, Klaus R. Dittrich, David Maier, Stanley B. Zdonik: The Object-Oriented
Database System Manifesto. in "Deductive and Object-Oriented Databases",
Proceedings of the First International Conference on Deductive and Object-Oriented
Databases (DOOD'89), pp. 223-240

feature list compiled from: [Atk+89] Malcolm P. Atkinson, François Bancilhon, David J.
DeWitt, Klaus R. Dittrich, David Maier, Stanley B. Zdonik: The Object-Oriented
Database System Manifesto. in "Deductive and Object-Oriented Databases",
Proceedings of the First International Conference on Deductive and Object-Oriented
Databases (DOOD'89), pp. 223-240

plus there are a few

goodies - scientists are

allowed to have visions

plus there are a few

goodies - scientists are

allowed to have visions

© 2004 Wolfgang W. Keller - all rights reserved 20

HOW
Overview

• what is persistence anyway?
• persistence defined
• the concept of transparent persistence
• persistence interfaces

• application styles
• when to use o/r mapping and when to use other options

• o/r mappers explained (how to …) from the primitive to the complex
• the basics of mapping
• the basics of implementing o/r mapper features

– oid, inheritance, relations, transactions,
• persistence in EJBs
• a few remarks on the state-of-the-art in .NET
• summary

© 2004 Wolfgang W. Keller - all rights reserved 21

Chapter Overview
Application Styles

• key messages
• a few very important attributes for starters

• single user systems
– serialization and flat file persistence

• multi user systems with check-in // check-out persistence
– again serialization and flat file persistence

• number of objects - database size

• access patterns
– object navigation versus record querying

• the list of forces a.k.a. nonfunctional requirements

© 2004 Wolfgang W. Keller - all rights reserved 22

Application Styles
Key Messages

• avoid using relational databases for tree
like and graph like data structures

• avoid using flat files or OODBs for
business systems that would be normally
implemented using a relational database

• systems with a high level of concurrency
• and with a large number of short transactions

© 2004 Wolfgang W. Keller - all rights reserved 23

Please!
No Tree Structures in a Relational Database!

node id parent value

2 1 Otto
1 null Hugo

3 1 Paul
4 2 Else
5

1 Hugo

3 Paul2 Otto

4 Else 5 Anna

2 Anna
6 Karl

6 5 Karl

navigating from Hugo

to Otto costs 3 select

statements

navigating from Hugo

to Otto costs 3 select

statements

© 2004 Wolfgang W. Keller - all rights reserved 24

Single User System: Typical Example for a
„Single User System“ - A User is editing a
CAD Model of a Family Home

• CAD models and the like are typically
represented by complex object models

• the size of low profile CAD models is in
the mega bytes range

• it does not make too much sense if two
people edit the same „small“ model at
the same time

• serializing such a model into a flat file
can do the job - often better than
putting the model in a RDB

© 2004 Wolfgang W. Keller - all rights reserved 25

Now assume there are 7 Architects who do
each a Piece of the Job

Architects‘ office
CAD repository

check out -> o.k.(1)

check out -> blocked (2)

(3) check back in-> o.k.

(4) check out -> o.k.

Anne‘s CAD
John‘s CAD

you will find something

similar as version

control in programming

you will find something

similar as version

control in programming

© 2004 Wolfgang W. Keller - all rights reserved 26

Size matters :-)

• flat file and check in /
check out feasible

• PLEASE use a database

your computer‘s memory (1 Gig)

size of appli-
cation data

(megs)

size of application data (terabytes)

the memory size of your PC
is peanuts compared to this

© 2004 Wolfgang W. Keller - all rights reserved 27

A few Rules of Thumb

• You have high concurrency - many users working the same data
– use a „real“ database like an RDBMS or an OODBMS

• You need „true“ database features like recovery, logging,
concurrency

– use a relational or object database :-)
• Your amount of user data is several times larger than the working

storage of you computer
– use a relational or object database

• Your amount of user data is small compared to your computer size,
concurrency is low to non existent, the problem is a check in /
check out problem

– consider using stream persistence
• You build an Enterprise Information System like order entry,

bookkeeping and the like
– do what everybody does - use a RDBMS

© 2004 Wolfgang W. Keller - all rights reserved 28

For a more educated Decision have a look at
Jens Coldewey’s Tutorial on “Choosing
Database Technology” - it’s free!

ODBMS
ORDBMS
RDBMS

Distribution
Database

Orientation

Tx Load

Query support

Market PositionObject Size

Object Orientation

Number of
Classes

Navigational
Access

Distribution
Database

Orientation

Tx Load

Query support

Market PositionObject Size

Object Orientation

Number of
Classes

Navigational
Access

Available at: http://www.coldewey.com/publikationen/ChoosingDatabaseTech.pdf

© 2004 Wolfgang W. Keller - all rights reserved 29

HOW
Overview

• what is persistence anyway?
• persistence defined
• the concept of transparent persistence
• persistence interfaces

• application styles
• when to use o/r mapping and when to use other options

• o/r mappers explained (how to …) from the primitive to the complex
• the basics of mapping
• the basics of implementing o/r mapper features

– oid, inheritance, relations, transactions,
• persistence in EJBs
• a few remarks on the state-of-the-art in .NET
• summary

© 2004 Wolfgang W. Keller - all rights reserved 30

Chapter Overview (1/2)
O/R Mappers ... from the Primitive to the
Complex

• mapping „straight“ objects
• 1 class => 1 table

• the CRUD pattern
• create, read, update, write

• object identity and the identity cache
• 1:n relations and lazy loading
• persistence „without programming“: exploiting meta

information

© 2004 Wolfgang W. Keller - all rights reserved 31

Chapter Overview (2/2)
O/R Mappers ... from the Primitive to the
Complex

• mapping inheritance, polymorphism
• transactions

© 2004 Wolfgang W. Keller - all rights reserved 32

Key Messages

• even if I tell you ho to build one ☺
don‘t build o/r mappers - buy them

• unless you are a open source or commercial developer of such
layers or in the research business

• avoid using implementation inheritance, multiple
inheritance, polymorphic queries and other O-O gadgets for
plain old domain objects in business systems.

• This is only rarely needed and it only costs
• O/R mappers get over complicated

© 2004 Wolfgang W. Keller - all rights reserved 33

Mapping „straight“ Objects

class Gangster

string name
string nick_name
int badness

SQL> desc gangster
Name Null? Type
--- -------- ----------------------------
NAME NOT NULL VARCHAR2(255)
NICK_NAME VARCHAR2(64)
BADNESS NOT NULL NUMBER(10)

Each field is mapped to a database column
this looks simple, but

Source: Idea from the JBoss Crime Portal Tutorial
http://rzm-hamy-wsx.rz.uni-karlsruhe.de/Training/JBoss-3.0/html-generated/crimeportal.html

© 2004 Wolfgang W. Keller - all rights reserved 34

Mapping „straight“ Objects
but ... The Devil is in the Details

• How do you map variable length data types like e.g.
strings?

• lots of VARCHARS do not speed up a database
• enums need special treatment
• SQL data types are not semantically identical with e.g. Java

data types
• how do you deal with aggregated complex types like e.g.

records?
• Put them in an extra table (slower)
• unfold them into various tables (tougher to maintain)

• Different mapper vendors have different answers

© 2004 Wolfgang W. Keller - all rights reserved 35

Mapping Straight Objects
You need an Identifier (id, a.k.a. oid)

• In O-O languages instances are implicitly identified
• duplicate „keys“ are no problems

• if you want to find something in a database you need a
unique key

• therefore in most cases a synthetic object id (OID) is added
to the „pure“ domain model

Gangster bigBoss;
Gangster capo;
Gangster arrestHim;

capo = new Gangster(„Miller“,“the Killer“,9);
bigBoss = new Gangster(„Miller“,„the Smart“,13);

arrestHim = Gangster.getByName(„Miller“); // ????

© 2004 Wolfgang W. Keller - all rights reserved 36

The CRUD pattern (1)
Or how are objects moved up and down
between the database and object space

Gangster
Miller

ROW Miller

An object is created in
e.g. Java

A database row has
to be inserted.
This is the C

Table GANGSTER

Process terminates

Create

© 2004 Wolfgang W. Keller - all rights reserved 37

The CRUD pattern (2)
Or how are objects moved up and down
between the database and object space

ROW Miller

Gangster
Miller

An object is read from
the database - the R

Gangster
Miller

The object is changed

ROW Miller

The changed object
is written to the
database - an Update

Read, Update (Write) Pattern

© 2004 Wolfgang W. Keller - all rights reserved 38

Sample:
The code that updates a Gangster EJB
using Bean Managed Persistence (BMP)

private void storeRow() throws SQLException {
String updateStatement =

"update GANGSTER set NAME = ? ," +
"NICK_NAME = ? , BADNESS = ? " +
"where OID = ?";

PreparedStatement prepStmt =
con.prepareStatement(updateStatement);

prepStmt.setString(1, name);
prepStmt.setString(2, nick_name);
prepStmt.setDouble(3, badness);
prepStmt.setString(4, oid);
int rowCount = prepStmt.executeUpdate();
prepStmt.close();

if (rowCount == 0) {
throw new EJBException("Storing row for id " + oid + " failed.");

}
}

Backup

© 2004 Wolfgang W. Keller - all rights reserved 39

The CRUD pattern (3)
Or how are objects moved up and down
between the database and object space

ROW Miller

Gangster
Miller

An object is read from
the database - the R

Gangster
Miller

The object is marked for deletion

ROW Miller

The row is deleted
a Delete

Delete

deleteHim = Gangster.getByOID(1234567);
deleteHim.markDeleted();

© 2004 Wolfgang W. Keller - all rights reserved 40

Where do you find the CRUD methods?
There are several variants

• You can find the methods as an addendum in the domain
classes

• this is straight forward, but not considered very elegant
• application of the „Multilayer Class“ Pattern*

• you can find the methods in an additional „data container
object“**

• results in a better separation of layers
• you can find code that generates the methods at runtime

exploiting meta-information using e.g. the Reflection API in
Java, or reflection if you work in Smalltalk

• browse the the „Reflective CRUD pattern“***

* find it at http://www.objectarchitects.de/arcus/publicat/multilay.ps.gz

** see „Row Data Gateway“ in Fowler‘s Patterns of Enterprise Apps

*** http://www.inf-cr.uclm.es/www/mpolo/yet/

© 2004 Wolfgang W. Keller - all rights reserved 41

Object Identity and the Identity Cache

• the same object should be read once and only once from
the database in one transaction

• there needs to be a mechanism to guarantee this
• and the mechanism should be hidden from the programmer

using the persistence layer

Gangster capoDeiCapi;
Gangster ilSoloCapo;

capoDeiCapi = Gangster.getByName(„Corleone“, „Vito“); // (1)
ilSoloCapo = Gangster.getByName(„Corleone“, „Vito“); // (2)

capoDeiCapi.setBadness(MAXBADNESS);
if (MAXBADNESS != ilSoloCapo.getBadness()) {

// Palermo!!! – we’ve got a problem
};

© 2004 Wolfgang W. Keller - all rights reserved 42

The Identity Cache can be implemented as a
Hash Table with an Entry per Loaded Object

OID

„1234567“

Vito
Corleone

• The first getByName() will return
the „Vito Corleone“ object

• the second getByName() may try
to register the „Vito Corleone“
object. It will get a handle to the
object already registered and will
return it

• There are various versions how
to implement this in detail .. But
with similar semantics.

ilSoloCapo capoDeiCapi

© 2004 Wolfgang W. Keller - all rights reserved 43

1:n Relations and Lazy Loading

Gangster Crime
1 n

Gangster-Row Crime1-Row

Crime2-Row

Crime3-Row

public class Gangster {
....
private Set crimes
....

public void getAllCrimes (Set aCrimeSet) {
// lazy load goes here ...

};
}

OID, Primary Key

© 2004 Wolfgang W. Keller - all rights reserved 44

1:n Relations and Lazy Loading

• Problem: If you load a Gangster (getByName) you don‘t
want to automatically load all crimes (fill the set)

• therefore you don‘t fill the Set of Crimes when you load a
gangster but implement a special „lazy Set“ that will not
load anything before it is actually accessed by a getter-
method

• This is known as „lazy loading“*, and various variants of
„smart pointers“

• There are variants of this mechanism depending on the
persistence API you use - but most layers use it

* see „Lazy Load“ in Fowler‘s Patterns of Enterprise Applications

© 2004 Wolfgang W. Keller - all rights reserved 45

Persistence „without programming“ -
Exploiting Meta Information

Observation: code like this need not be written by hand
• it can be generated by a preprocessor
• or it can also be generated at run time using e.g. the Java

Reflection API

private void storeRow() throws SQLException {
String updateStatement =

"update GANGSTER set NAME = ? ," +
"NICK_NAME = ? , BADNESS = ? " +
"where OID = ?";

PreparedStatement prepStmt =
con.prepareStatement(updateStatement);

prepStmt.setString(1, name);
prepStmt.setString(2, nick_name);
prepStmt.setDouble(3, badness);
prepStmt.setString(4, oid);
int rowCount = prepStmt.executeUpdate();
prepStmt.close();

if (rowCount == 0) {
throw new EJBException("Storing row for id " + oid + " failed.");

}
}

© 2004 Wolfgang W. Keller - all rights reserved 46

Exploiting Meta Information
Different mappers use different approaches

• JDO uses a so called „Class Enhancer“ which
„pre“processes Java .class files

• the enhancements are not direct SQL code but calls to a
persistence manager – bur JDO would be another talk

• see e.g. www.jdocentral.com
• EJB-CMP uses a lot of user provided meta-information

• code generation at build time
• see documentation of EJB containers - e.g. www.jboss.org

• Reflective CRUD exploits the Reflection API
• code generation at run-time
• see http://www.inf-cr.uclm.es/www/mpolo/yet/

© 2004 Wolfgang W. Keller - all rights reserved 47

Mapping simple Inheritance - Variant 1
One Inheritance Tree // One Table*

* if you‘re interested in table mappings there‘s a complete paper for free at
http://www.objectarchitects.de/ObjectArchitects/orpatterns/MappingObjects2Tables/mapping_object.htm

SytheticOID OID
BaseClassAttributes

BaseClass

DescandantAAttributes

DescendantA DescendantB

DescandantAAttributes DescandantBAttributes

Table for BaseClass, DescandantA, DescandantB

DescandantAAttributes DescandantBAttributesSytheticOID, BaseClassAttributes

BaseClassInstance

DescendantA Instance

DescendantB Instance

Null Values Null Values

Null Values

Null Values

Attribute Values

Attribute Values Attribute Values

Attribute ValuesAttribute Values

is mapped to

© 2004 Wolfgang W. Keller - all rights reserved 48

Mapping simple Inheritance - Variant 2
One Class // One Table

* if you‘re interested in table mappings there‘s a complete paper for free at
http://www.objectarchitects.de/ObjectArchitects/orpatterns/MappingObjects2Tables/mapping_object.htm

SytheticOID OID
BaseClassAttributes

BaseClass

DescandantAAttributes

DescendantA DescendantB

DescandantAAttributes DescandantBAttributes

is mapped to

SytheticOID OID
BaseClassAttributes
......

BaseClassTable

SytheticOID OID
DescandantAAttributes
......

DescandantATable

SytheticOID OID
DescandantBAttributes
......

DescandantBTable

© 2004 Wolfgang W. Keller - all rights reserved 49

Mapping simple Inheritance - Variant 2
The main drawback is evident - Performance

SytheticOID OID

String Name

Party Table

SytheticOID OID

SocSecurityNo char(15)

Employee Table

SalariedEmployee Table

MonthlySalary numeric(7,2)

SytheticOID OID

is linked via OID to

is linked via OID to

SytheticOID OID
String Name

Party

CreditState aState

Customer

SalariedEmployee

Employee

FreelanceEmployee

Money MonthlySalary

String SocSecurityNo

Money HourlySalary

Constructing one object instance needsup to 3 selects
Polymorphic queries potentially need to visitall tables

Constructing one object instance needsup to 3 selects
Polymorphic queries potentially need to visitall tables

© 2004 Wolfgang W. Keller - all rights reserved 50

Mapping - Summary

• there are various aspects that need to be taken into account (see table
below // forces)

• there‘s ample and also free literature on the web
• http://www.objectarchitects.de/ObjectArchitects/orpatterns/

mapping patterns for free
• or get it from Scott Ambler at

http://www.agiledata.org/essays/mappingObjects.html
• Martin Fowler‘s „Patterns of Enterprise Application Architecture“ has the

same in a book

Performance Pattern
Write/
Update

Single
Read

Polymorphic
Queries

Space
Consumption

Flexibility,
Maintainability

Ad-hoc
Queries

Single Table Aggregation + + * + - -
Foreign Key Aggregation - - * + + +
One Inheritance Tree One
Table

+o +o + - + +
One Class One Table - - -o + + -
One Inheritance Path One
Table

+ + - + - -
Objects in BLOBs +o +o o + - -
Foreign Key Association - o * + + +
Association Table - o * + + +

+ good, - poor, * irrelevant, o depends, see detailed discussion

© 2004 Wolfgang W. Keller - all rights reserved 51

Transactions and Locking
The Lost Update Problem or
2 + 1 + 1 may end up to be 3

time

process 1 process 2 database

read a

a = a + 1
write a

a == 1

read a

a = a + 1
write a

a == 2

a == 2

a == 1
a == 1

a == 1

© 2004 Wolfgang W. Keller - all rights reserved 52

Transactions
Same Use Case
Use of Pessimistic Locking

time

process 1 process 2 database

begin transaction
read a for update

a = a + 1
write a
end transaction

a == 1
begin transaction
read a for update

blocked

a = a + 1
write a
end transaction

a == 2

a == 2

a == 1 a locked for process 1

a == 2

a == 3

a released
a locked for

process 2

a released

© 2004 Wolfgang W. Keller - all rights reserved 53

Transactions
Same Use Case
Use of Optimistic Locking

time

process 1 process 2 database

read a

a = a + 1
write a

a == 1

read a

a = a + 1
write a

a == 2

a == 2

a == 1
a == 1

a == 1

error
timestamp mismatch

© 2004 Wolfgang W. Keller - all rights reserved 54

Pessimistic vs.Optimistic Locking

• pessimistic locking is the standard way to prevent the lost
update problem provided by relational databases

• it is appropriate if the application above guarantees that locks are
held only for short periods of time

• it is fatal if somebody holds locks for minutes - even if somebody
holds locks for seconds, it pulls down performance

• pessimistic locking can lead to deadlock situations - which are
resolved by the database manager which rolls back transactions

• optimistic locking is offered by most o/r access layers
• timestamp errors need to be handled by the application - the

reaction is domain specific
• it is appropriate for long transactions
• with a low likelihood of collisions

© 2004 Wolfgang W. Keller - all rights reserved 55

Implementing Optimistic Locking

• you need a special transaction object that knows which
objects need to be written to a database

• objects need to be registered with this transaction object
• this can happen automatically „under the surface“

• you need to add a timestamp field in each table in the
physical database design

• this will also be read upon read
• and will be compared when updating

• still needs to be based on pessimistic locks, while changes
are written

• as people have thought of all this before, e.g. JDO offers
this mechanism as a ready to use option

© 2004 Wolfgang W. Keller - all rights reserved 56

HOW
Overview

• what is persistence anyway?
• persistence defined
• the concept of transparent persistence
• persistence interfaces

• application styles
• when to use o/r mapping and when to use other options

• o/r mappers explained (how to …) from the primitive to the complex
• the basics of mapping
• the basics of implementing o/r mapper features

– oid, inheritance, relations, transactions,
• persistence in EJBs
• a few remarks on the state-of-the-art in .NET
• summary

© 2004 Wolfgang W. Keller - all rights reserved 57

Persistence in EJBs
A short outline ...

EJB Persistence

use EJBs as intended use lightweight
frameworks

bean managed
persistence

container managed
persistence

JDO implementation

Hibernate

other

© 2004 Wolfgang W. Keller - all rights reserved 58

Persistence in EJBs
A short outline ...

• First of all EJB containers distinguish between
• Session Beans

– these are „transient“
• Entity Beans

– these are the potentially persistent objects that store business objects
• For Entity Beans there are two persistence mechanisms

• Bean Managed Persistence (BMP)
– this is „write your own layer “ persistence
– might be used in complex mapping cases or performance critical

apps
• Container Managed Persistence (CMP)

– automatic, using normed protocols
– vendor specific
– need not be mapped to a database - may be mapped to a database
– Clear Advantage: Query Language

seen that beforeseen that before

© 2004 Wolfgang W. Keller - all rights reserved 59

CMP: Pros and Cons

Pro: Query Language with the power of OQL comes for free
Pro: For simple, straight cases you need not know too much about

access layers

Caveat: Have a look at how you container vendor implements CMP.
He might implement it without a database just based on
indexed files. The standard does alone does not prevent it.

Con: Lots and lots of deployment information needs to be written
Con: Does not cover really complex data type to database

mapping (vendor specific)

For a detailed comparison with e.g. JDO - another mapping layer see
backup slides

© 2004 Wolfgang W. Keller - all rights reserved 60

Persistence with EJB Containers
You find the following main options

• Use, what the container provides
• CMP and BMP

• Lately people use a „lighter“ weight persistence framework
and skip the Entity Beans

• either Hibernate
• or a JDO implementation
• or anything else from the market

© 2004 Wolfgang W. Keller - all rights reserved 61

EJB-Container Managed Persistence (1)
versus for example JDO
the table can be found at www.jdocentral.com or in David Jordan‘s and Craig Russel‘s highly recommendable book on JDO

{PRIVATE}Characteri CMP beans JDO persistent classes
Environmental
Portability of
applications

Few portability unknowns Documented portability rules

Operating environment Application server One-tier, two-tier, web server, application server
Independence of
persistent classes from
environment

Low: beans must implement EJB
interfaces and execute in server
container

High: persistent classes are usable with no special
interface requirements and execute in many
environments

Metadata
Mark persistent classes Deployment descriptor identifies all

persistent classes
Metadata identifies all persistent classes

Mark persistent fields Deployment descriptor identifies all
persistent fields and relationships

Metadata defaults persistent fields and
relationships

Modeling
Domain-class modeling
object

CMP bean (abstract schema) Persistent class

Inheritance of domain-
class modeling objects

Not supported Fully supported

Field access Abstract get/set methods Any valid field access, including get/set methods
Collection, Set Supported Supported
List, Array, Map Not supported Optional features
Relationships Expressed as references to CMP local

interfaces
Expressed as references to JDO persistent classes
or interfaces

Polymorphic references Not supported Supported

see:

Backup

© 2004 Wolfgang W. Keller - all rights reserved 62

EJB-Container Managed Persistence (2)
versus for example JDO
the table can be found at www.jdocentral.com or in David Jordan‘s and Craig Russel‘s highly recommendable book on JDO

see:

{PRIVATE}Characteri CMP beans JDO persistent classes
Programming
Query language EJBQL modeled after SQL JDOQL modeled after Java Boolean expressions
Remote method
invocation

Supported Not supported

Required lifecycle
methods

setEntityContext,
unsetEntityContext,
ejbActivate, ejbPassivate,
ejbLoad, ejbStore,
ejbRemove

no-arg constructor (may be private)

Optional lifecycle
callback methods

ejbCreate, ejbPostCreate,
ejbFind

jdoPostLoad, jdoPreStore,
jdoPreClear, jdoPreDelete

Mapping to relational
datastores

Vendor-specific Vendor-specific

Method security policy Supported Not supported
Method transaction
policy

Supported Not supported

Nontransactional access Not standard Supported
Required
classes/interfaces

EJBLocalHome, local interface (if
local interface supported);
EJBHome, remote interface (if
remote interface supported);
Abstract beans must implement
EJBEntityBean;
Identity class (if nonprimitive
identity)

Persistent class;
objectid class (only for application identity)

Transaction
synchronization
callbacks

Not supported Supported

Backup

© 2004 Wolfgang W. Keller - all rights reserved 63

HOW
Overview

• what is persistence anyway?
• persistence defined
• the concept of transparent persistence
• persistence interfaces

• application styles
• when to use o/r mapping and when to use other options

• o/r mappers explained (how to …) from the primitive to the complex
• the basics of mapping
• the basics of implementing o/r mapper features

– oid, inheritance, relations, transactions,
• persistence in EJBs
• a few remarks on the state-of-the-art in .NET
• summary

© 2004 Wolfgang W. Keller - all rights reserved 64

a very short visit of persistence in .NET
let’s assume C#

• products have appeared somewhat later than similar
products in the Java community ...

• There are two levels ...
• database APIs similar to what JDBC offers .. in .NET speech the

equivalent is called ADO.NET
• full blown persistence layers similar to the one‘s we have seen so

far are there but in smaller numbers. Some are also „descendants“
from a previous Java version.

© 2004 Wolfgang W. Keller - all rights reserved 65

ADO.NET, C# code sample
from http://samples.gotdotnet.com/quickstart/howto/doc/adoplus/updatedatafromdb.aspx

// Create a new Connection and SqlDataAdapter

SqlConnection myConnection = new
SqlConnection("server=(local)\\VSdotNET;Trusted_Connection=yes;database=northwind");

SqlDataAdapter mySqlDataAdapter = new SqlDataAdapter("Select * from Customers",
myConnection);

DataSet myDataSet = new DataSet();
DataRow myDataRow;

// Create command builder. This line automatically generates
// the update commands for you, so you don't
// have to provide or create your own.
SqlCommandBuilder mySqlCommandBuilder = new SqlCommandBuilder(mySqlDataAdapter);

// Set the MissingSchemaAction property to AddWithKey because Fill will not cause primary
// key & unique key information to be retrieved unless AddWithKey is specified.
mySqlDataAdapter.MissingSchemaAction = MissingSchemaAction.AddWithKey;

mySqlDataAdapter.Fill(myDataSet, "Customers");

myDataRow = myDataSet.Tables["Customers"].NewRow();
myDataRow["CustomerId"] = "NewID";
myDataRow["ContactName"] = "New Name";
myDataRow["CompanyName"] = "New Company Name";

myDataSet.Tables["Customers"].Rows.Add(myDataRow);

Backup

© 2004 Wolfgang W. Keller - all rights reserved 66

a few places where you can find information
on .NET persistence

• some relevant groups and places
• usenet: microsoft.public.objectspaces
• http://groups.msn.com/DotNetPersistence
• http://dotnetguru.org/ section on persistence

• full blown persistence products: just some examples ...
• Pragmatier for VB.NET and C#

http://www.pragmatier.com
• FastObjects for C#

http://www.fastobjects.com/
• db4o

http://www.db4o.com

© 2004 Wolfgang W. Keller - all rights reserved 67

HOW
Overview

• what is persistence anyway?
• persistence defined
• the concept of transparent persistence
• persistence interfaces

• application styles
• when to use o/r mapping and when to use other options

• o/r mappers explained (how to …) from the primitive to the complex
• the basics of mapping
• the basics of implementing o/r mapper features

– oid, inheritance, relations, transactions,
• persistence in EJBs
• a few remarks on the state-of-the-art in .NET
• summary

© 2004 Wolfgang W. Keller - all rights reserved 68

Summary
The 4 Key Messages revisited

• know you application style before you decide for a certain
way to implement persistence

• know the concept of transparent persistence
• don‘t develop your own green-field persistence layer unless

you do it for fun. That made sense 10 years ago but in the
presence of plenty of commercial and open source software
for the area it is nowadays too expensive in most cases

• In case you run into problems, know where to find the
patterns and explanations on the mechanics of persistence

Sloooow :-)

© 2004 Wolfgang W. Keller - all rights reserved 69

Questions

© 2004 Wolfgang W. Keller - all rights reserved 70

Pointers to Additional Material

• Find many of the patterns free of charge at
http://www.objectarchitects.de/

• Find similar patterns in Martin Fowler‘s book „Patterns
of Enterprise Application Architecture“
(ISBN 0-321-12742-0)

• Find distribution schemes and information on EJB
mapping at http://www.service-architecture.com/

• site by Doug Barry - contains a lot on persistence
architectures, ODMG, O/R mappers, ...

• Find good code examples for JDO (Java Data
Objects) as one possible Java persistence layer at
www.JDOcentral.com. Also highly recommended book
„Java Data Objects“ by David Jordan and Craig
Russel (ISBN 0-596-0026-9)

© 2004 Wolfgang W. Keller - all rights reserved 71

Pointers to Additional Material

• Christian Bauer and Gavin King: Their book “Hibernate in
Action” coming up. State December 2004: In public review at
http://theserverside.com/resources/HibernateReview.jsp

© 2004 Wolfgang W. Keller - all rights reserved 72

Pointers to Additional Material

• have a look at one of Scott Ambler‘s web sites
http://www.agiledata.org - you‘ll find ample high
quality papers for free

© 2004 Wolfgang W. Keller - all rights reserved 73

Credits

• thanks for some slides from
Jens Coldewey, Coldewey Consulting. Please visit Jens‘
web-site at http://www.coldewey.com/

• Thanks to the JBoss people for the Crime Portal idea
• Thanks to David Jordan and Craig Russel for their excellent

JDO book (ISBN 0-596-0026-9)

